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Genomics of neonatal sepsis: has-miR-150
targeting BCL11B functions in disease
progression
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Abstract

Background: Neonatal sepsis is an inflammatory systemic syndrome, which is a major cause of morbidity and mortality
in premature infants. We analyzed the expression profile data of E-MTAB-4785 to reveal the pathogenesis of the disease.

Methods: The expression profile dataset E-MTAB-4785, which contained 17 sepsis samples and 19 normal samples, was
obtained from the ArrayExpress database. The differentially expressed genes (DEGs) were analyzed by the Bayesian testing
method in limma package. Based on the DAVID online tool, enrichment analysis was conducted for the DEGs. Using
STRING database and Cytoscape software, protein-protein interaction (PPI) network and module analyses were performed.
Besides, transcription factor (TF)-DEG regulatory network was also constructed by Cytoscape software. Additionally,
miRNA-DEG pairs were searched using miR2Disease and miRWalk 2.0 databases, followed by miRNA-DEG regulatory
network was visualized by Cytoscape software.

Results: A total of 275 DEGs were identified from the sepsis samples in comparison to normal samples. TSPO, MAPK14,
and ZAP70 were the hub nodes in the PPI network. Pathway enrichment analysis indicated that CEBPB and MAPK14 were
enriched in TNF signaling pathway. Moreover, CEBPB and has-miR-150 might function in neonatal sepsis separately
through targeting MAPK14 and BCL11B in the regulatory networks. These genes and miRNA might be novel targets for
the clinical treatment of neonatal sepsis.

Conclusion: TSPO, ZAP70, CEBPB targeting MAPK14, has-miR-150 targeting BCL11B might affect the pathogenesis of
neonatal sepsis. However, their roles in neonatal sepsis still needed to be confirmed by further experimental researches.

Keywords: Neonatal sepsis, Differentially expressed genes, Enrichment analysis, Protein-protein interaction network,
Regulatory network

Background
As a kind of inflammatory systemic syndrome that is de-
termined by a serious infection (bacterial or viral sepsis),
neonatal sepsis is composed of early-onset sepsis (EOS)
and late-onset sepsis (LOS) [1]. The leading risk factors
of the disease are prematurity, prolonged rupture of
membranes, and low birth weight [2]. Besides, neonatal
sepsis is a main reason for morbidity and mortality in
premature infants [3]. Therefore, investigating the mo-
lecular mechanisms of neonatal sepsis is urgent and im-
portant for developing novel therapies.

The key genes and miRNAs involved in the mecha-
nisms of neonatal sepsis have been reported by several
studies. For instance, interleukin (IL)-17A is recognized
as a effector of IL-18–mediated injury and the outcomes
of neonatal sepsis can be improved by disrupting the
IL-18/IL-1/IL-17A axis [4]. Previous studies explore pan-
creatic stone protein (PSP) in neonatal sepsis, finding
that PSP is a potential biomarker in combination with
procalcitonin in EOS [5, 6]. The overexpression of CD64
is demonstrated to be a highly specific indicator for pa-
tients with neonatal sepsis, and CD64 index can be uti-
lized to determine LOS before infants show signs of
infection [7, 8]. MiR-15a/16 is a miRNA that may have a
critical role in the regulation of gene expression at the
post-transcriptional level, which is declared to be useful
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for the diagnosis and prognosis of neonatal sepsis [9]. In
spite of the above studies, the genes and miRNAs acting
in neonatal sepsis have not been fully revealed.
In 2014, Cernada et al. [10] used genome-wide expres-

sion profiles to assess the expression differences between
infants with and without neonatal sepsis, finding that
the expression profiles have differences in the early days
of neonatal period. However, they have not performed
comprehensive bioinformatics analysis to reveal the
mechanisms of neonatal sepsis. Using the data deposited
by Cernada et al. [10], we further conducted differential
expression analysis, enrichment analysis, protein-protein
interaction (PPI) network analysis and regulatory net-
work analysis to better or to further investigate the
structure and expression of some of the genes that
seemed to influence the genesis of neonatal sepsis.

Materials and methods
Microarray data
The expression profile data of E-MTAB-4785 was down-
loaded from the ArrayExpress database (http://www.ebi.a-
c.uk/arrayexpress/), which was sequenced on the platform
of the Affymetrix GeneChip Human Gene 1.0 ST Array
[HuGene-1_0-st-v1]. E-MTAB-4785 included 17 blood
samples from infants with neonatal sepsis (gestational age
= 27 ± 2 weeks, birth weight = 1030 ± 231, 11 males and 6
females) and 19 blood samples from infants without neo-
natal sepsis (gestational age = 28 ± 2 weeks, birth weight =
1130 ± 329, 13 males and 6 females). All very low birth
weight (VLBW) infants were selected from the University
and Polytechnic Hospital La Fe between April 2011 to Sep-
tember 2012. Sepsis infants were those with clinical signs of
sepsis [11] and/or risk factors [12, 13], while nonseptic in-
fants were those without clinical signs of infection. Venous
blood was obtained from sepsis infants and nonseptic in-
fants before starting antibiotics, and stored at − 20 °C for
following RNA extraction. The expression profile data of
E-MTAB-4785 was deposited by Cernada et al. [10]. The
study of Cernada et al. got the approval of the local institu-
tional review board, and informed consent of all partici-
pants were provided by their parents or representatives.

Data preprocessing and differentially expressed genes
(DEGs) screening
After the raw data were read by the oligo package (http://
www.bioconductor.org/packages/release/bioc/html/oli-
go.html) [14] in R, data preprocessing were performed using
the Robust MultiArray Averaging (RMA) method [15], in-
cluding background correction, quantile normalization and
expression calculation. The average value of probes was ob-
tained as the final gene expression value of their correspond-
ing common gene symbol. The Bayesian testing method [16]
in limma package (http://www.bioconductor.org/packages/
release/bioc/html/limma.html) [17] was utilized to identify

the DEGs between the two group samples. The p-values
were conducted with multiple testing adjustment based on
the Benjamini & Hochberg method [18]. The adjusted
p-value < 0.05 and |log2fold-change (FC)| > 0.585 were set as
the thresholds.

Functional and pathway enrichment analysis
The Gene Ontology (GO, http://www.geneontology.org)
project describes gene products from biological process
(BP), cell component (CC) and molecular function (MF)
aspects [19]. The KEGG (Kyoto Encyclopedia of Genes
and Genomes, http://www.genome.ad.jp/kegg/kegg2.html)
database involves not only genes but also their functional
information [20]. Using the DAVID (Database for Annota-
tion, Visualization and Integrated Discovery, version 6.8,
http://david.abcc.ncifcrf.gov) online tool [21], GO func-
tional and KEGG pathway enrichment analyses were car-
ried out for the DEGs. The p-value < 0.05 was selected as
the cut-off criterion.

PPI network and module analyses
Using the STRING database (version 10.0, http://
string-db.org) [22], the PPI analysis was conducted for
the DEGs, with the required confidence (combined
score) > 0.4 as the threshold. Followed by the PPI network
was visualized by the Cytoscape software (http://
www.cytoscape.org/) [23]. Based on the CytoNCA plu-
gin [24] in Cytoscape software, degree centrality (DC), be-
tweenness centrality (BC) and closeness centrality (CC) of
nodes were analyzed to identify hub nodes [25]. In
addition, module analysis was conducted for the network
using the MCODE plugin [26] in Cytoscape software.

Regulatory network construction
Using the iRegulon plugin [27] in Cytoscape software, the
transcription factor (TF)-DEG pairs in the PPI network
were predicted, with the Normalized Enrichment Score
(NES) > 3 as the threshold. Then, TF-DEG regulatory net-
work was visualized using Cytoscape software [23]. The
sepsis-associated miRNAs were searched from the miR2Di-
sease (http://www.mir2disease.org/) database [28], and then
their targets were downloaded from the miRWalk 2.0
(http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/
genepub.html) database [29]. Through mapping the target
genes into the DEGs, the sepsis-associated miRNA-DEG
pairs were screened and then miRNA-DEG regulatory net-
work was constructed by Cytoscape software [23].

Results
Analysis of DEGs
Through data preprocessing, the expression values of
18,718 genes were acquired. Compared with normal
samples, there were a total of 275 DEGs in the sepsis
samples, including 180 up-regulated genes and 95
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down-regulated genes. Therefore, there were more
up-regulated genes in relative to down-regulated genes.

Functional and pathway enrichment analysis
GO functional and KEGG pathway enrichment analyses
separately were conducted for the up-regulated genes, and
the top 5 terms in each category were listed in Table 1. The
terms enriched for the up-regulated genes included cellular
response to lipopolysaccharide (BP, p = 3.05E-06), extracel-
lular exosome (CC, p = 3.26E-06), histone acetyltransferase
binding (MF, p = 2.54E-03), and TNF signaling pathway
(pathway, p = 3.65E-06). Meanwhile, the top 5 terms
enriched for the down-regulated genes were listed in
Table 2, including regulation of immune response (BP, p =

4.11E-15), T cell receptor complex (CC; p = 1.22E-10; which
involved zeta-chain-associated protein of 70 kDa, ZAP70),
transmembrane signaling receptor activity (MF, p =
4.20E-06), and T cell receptor signaling pathway (pathway;
p = 4.90E-07; which involved ZAP70).

PPI network and module analyses
A PPI network was visualized for the DEGs, which involved
144 nodes and 311 interactions (Fig. 1). According to the
DC, BC and CC scores of nodes, translocator protein
(TSPO), mitogen-activated protein kinase 14 (MAPK14), and
ZAP70 were the hub nodes in the PPI network (Table 3).

Table 1 The functions and pathways enriched for the
up-regulated genes

Category Description P-value Gene number

BP GO:0071222~cellular response
to lipopolysaccharide

3.05E-06 10

GO:0051384~response to
glucocorticoid

1.75E-05 8

GO:0006955~immune response 6.59E-05 14

GO:0045766~positive regulation
of angiogenesis

1.31E-04 8

GO:0045087~innate immune
response

3.22E-04 22

CC GO:0070062~extracellular
exosome

3.26E-06 51

GO:0005615~extracellular space 3.15E-05 29

GO:0005886~plasma membrane 1.58E-04 59

GO:0016020~membrane 2.03E-03 32

GO:0031093~platelet alpha
granule lumen

1.08E-02 4

MF GO:0035035~histone
acetyltransferase binding

2.54E-03 4

GO:0001077~transcriptional
activator activity, RNA
polymerase II core promoter
proximal region sequence-specific
binding

9.14E-03 8

GO:0002020~protease binding 1.40E-02 5

GO:0016787~hydrolase activity 1.56E-02 5

GO:0019899~enzyme binding 1.88E-02 9

Pathway hsa04668:TNF signaling pathway 3.65E-06 10

hsa05150:Staphylococcus
aureus infection

3.23E-04 6

hsa05142:Chagas disease
(American trypanosomiasis)

7.74E-03 6

hsa04380:Osteoclast
differentiation

1.90E-02 6

hsa04910:Insulin signaling
pathway

2.39E-02 6

BP biological process, CC cell component, MF molecular function

Table 2 The functions and pathways enriched for the down-
regulated genes

Category Description P-value Gene number

BP GO:0050776~regulation
of immune response

4.11E-15 15

GO:0007166~cell surface
receptor signaling pathway

2.56E-06 11

GO:0050852~T cell
receptor signaling pathway

8.71E-05 7

GO:0072678~T cell migration 3.56E-04 3

GO:0045059~positive
thymic T cell selection

8.47E-04 3

CC GO:0042101~T cell receptor
complex

1.22E-10 7

GO:0005886~plasma membrane 1.40E-04 35

GO:0042105~alpha-beta
T cell receptor complex

2.26E-04 3

GO:0001772~immunological
synapse

5.25E-04 4

GO:0009897~external side
of plasma membrane

4.83E-03 6

MF GO:0004888~transmembrane
signaling receptor activity

4.20E-06 9

GO:1990405~protein antigen
binding

4.46E-04 3

GO:0030246~carbohydrate
binding

1.62E-03 6

GO:0023024~MHC class
I protein complex binding

1.40E-02 2

GO:0032393~MHC class
I receptor activity

2.31E-02 2

Pathway hsa04660:T cell receptor
signaling pathway

4.90E-07 8

hsa04672:Intestinal immune
network for IgA production

7.58E-05 5

hsa05340:Primary
immunodeficiency

5.41E-04 4

hsa04514:Cell adhesion
molecules (CAMs)

5.95E-04 6

hsa04650:Natural killer cell
mediated cytotoxicity

2.80E-03 5

BP biological process, CC cell component, MF molecular function
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Based on the MCODE plugin, a total of 5 modules were
identified from the PPI network. Among which, the genes
involved in module 1 (which had the highest score, score =
3.333) were mainly enriched in TNF signaling pathway (p=
4.59E-03), pathways in cancer (p= 5.42E-03), and osteoclast
differentiation (p= 6.97E-03) (Table 4).

Regulatory network analysis
A TF-DEG regulatory network was identified from the
PPI network, in which the TF CCAAT/enhancer binding
protein (C/EBP), beta (CEBPB) targeted 43 DEGs (such as
MAPK14) (Fig. 2). Besides, pathway enrichment analysis
was also conducted for the genes involved in the TF-DEG
regulatory network, the enriched pathways included TNF
signaling pathway (p = 4.89E-07, which involved CEBPB
and MAPK14), Epstein-Barr virus infection (p = 2.09E-04),
and osteoclast differentiation (p = 5.64E-04) (Table 5).
According to the miR2Disease database, has-miR-150

was obtained as a sepsis-associated miRNA. Followed by
the targets of has-miR-150 were downloaded from the miR-
Walk 2.0 database. Among the targets, 8 genes (including 3
up-regulated genes and 5 down-regulated genes; such as
B-cell CLL/lymphoma 11B, BCL11B) were differentially
expressed in this study. In addition, the miRNA-DEG regu-
latory network is showed in Fig. 3.

Fig. 1 The protein-protein interaction (PPI) network constructed for the differentially expressed genes (DEGs). The red circles and green diamonds
separately stand for up-regulated genes and down-regulated genes. The bigger nodes have higher connectivity degrees. Different edge colors
represent different modules (module 1: black; module 2: yellow; module 3: dark blue; module 4: purple; module 5: light blue)

Table 3 The top 15 nodes in the protein-protein interaction
(PPI) network

Node DC Node BC Node CC

TSPO 42 TSPO 8787.401 TSPO 0.084416

MAPK14 30 MAPK14 3945.718 MAPK14 0.082755

ZAP70 18 ZAP70 2945.19 ZAP70 0.081621

ICAM1 18 PLEK 1416.809 ICAM1 0.081481

MMP9 16 CD40LG 1228.869 CD40LG 0.081066

GATA3 13 GATA3 1149.809 NFATC2 0.080882

PPARG 13 PPP3CC 1065.391 THBS1 0.080609

NFKBIA 12 SLC2A3 878.1572 MMP9 0.080609

HIF1A 12 PDE7A 786 NFKBIA 0.080473

CD40LG 11 LDHA 778.0661 GATA3 0.080292

THBS1 11 NFKBIA 706.2174 HIF1A 0.080292

CEBPB 11 GNA15 660.3287 CEBPB 0.080247

SOCS3 10 HIF1A 614.6019 PPARG 0.080157

IRF1 10 CD3E 583.8388 SOCS3 0.080157

PLEK 9 CD82 550.5645 PLEK 0.079844

DC degree centrality, BC betweenness centrality, CC closeness centrality

Table 4 The pathways enriched for the genes involved in module 1

Description Gene number P-value

hsa04668:TNF signaling pathway 3 4.59E-03

hsa05200:Pathways in cancer 4 5.42E-03

hsa04380:Osteoclast differentiation 3 6.97E-03

hsa05160:Hepatitis C 3 7.18E-03

hsa05205:Proteoglycans in cancer 3 1.57E-02

hsa05144:Malaria 2 4.87E-02
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Discussion
In this study, there were 275 DEGs (including 180
up-regulated genes and 95 down-regulated genes) in the
sepsis samples compared with normal samples. A PPI
network for the DEGs was constructed, in which TSPO,
MAPK14, and ZAP70 were hub nodes according to the
DC, BC and CC scores. Besides, a total of 5 modules
were screened from the PPI network. Furthermore,
CEBPB-DEG regulatory network and has-miR-150-DEG
regulatory network separately were constructed.

TSPO (also named the peripheral benzodiazepine recep-
tor) functions in the regulation of inflammation and im-
mune function, and its antagonist PK-11195 can relief
cigarette smoke extract-induced inflammation [30]. San-
toro et al. demonstrate that TSPO ligands can lower
pro-inflammatory enzymes and oxidative stress in glial
cells via the biosynthesis of neurosteroids, thus these com-
pounds may be used for treating inflammatory-based neu-
ropathologies [31]. The MAPK14/p38α signaling is
considered as a central pathway for integrating useful sig-
nals in dendritic cells for inflammation and TH17 differ-
entiation [32]. The p38 kinase plays roles in responses of
T cells and inflammation, which mediates the production
of crucial inflammatory regulators (including IL-1β; TNFα;
and cyclooxygenase-2, COX-2) through cells of the innate
immune system [33]. The p38 MAP kinase signal trans-
duction pathway plays an essential role in regulating in-
flammation and proinflammatory cytokine production,
and inhibiting p38α isoform is sufficient and necessary for
anti-inflammatory effect [34]. Enrichment analysis showed
that ZAP70 was enriched in the function of T cell receptor
complex and the T cell receptor signaling pathway. The
function deletion of the ZAP70 tyrosine kinase in humans
can lead to a serious immunodeficiency, characterized by
non-functional CD4+ T cells and lacking mature CD8+ T
cells [35]. In ZAP70-deficient patients, circulating T cells
are under inadequate supervision, no longer differentiate
into TH2 T cells, are short of inhibitory growth controls,
and show decreased apoptosis, finally developing into in-
flammation and autoimmunity [36]. These declared that

Fig. 2 The transcription factor (TF)-differentially expressed gene (DEG)
regulatory network identified from the protein-protein interaction (PPI)
network. The red circles, green diamonds and red triangles represent
up-regulated genes, down-regulated genes and TFs, respectively.
Green arrows and grey lines separately indicate TF-DEG regulation
relationships and PPIs

Table 5 The pathways enriched for the genes involved in the
transcriptional regulatory network

Description Gene number P-value

hsa04668:TNF signaling pathway 7 4.89E-07

hsa05169:Epstein-Barr virus infection 6 2.09E-04

hsa04380:Osteoclast differentiation 5 5.64E-04

hsa04064:NF-kappa B signaling pathway 4 2.19E-03

hsa05145:Toxoplasmosis 4 5.20E-03

hsa04621:NOD-like receptor
signaling pathway

3 1.19E-02

hsa05164:Influenza A 4 1.51E-02

hsa05152:Tuberculosis 4 1.58E-02

hsa05140:Leishmaniasis 3 1.94E-02

hsa05142:Chagas disease
(American trypanosomiasis)

3 3.93E-02

hsa04620:Toll-like receptor
signaling pathway

3 4.07E-02

Fig. 3 The microRNA (miRNA)-differentially expressed gene (DEG)
regulatory network of has-miR-150 and its targets. The red circles,
green diamonds and yellow triangles represent up-regulated genes,
down-regulated genes and miRNAs, respectively
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TSPO, MAPK14, and ZAP70 might play critical roles in
neonatal sepsis.
Through inducing the CEBP family, endoplasmic

reticulum (ER) stress results in inflammatory responses in
response to palmitic acid stimulation in pancreatic acinar
cells, wherein CEBPB activation induces CEBPA activation
[37]. As a key transcription factor affecting metabolic dis-
turbances, CEBPB is critical for the maturation and differ-
entiation of adipocytes and is overexpressed during
proinflammatory conditions and ER stress [38]. Pathway
enrichment analysis indicated that CEBPB and MAPK14
were enriched in TNF signaling pathway. In the TF-DEG
regulatory network, MAPK14 was targeted by CEBPB, in-
dicating that CEBPB targeting MAPK14 might function in
neonatal sepsis through TNF signaling pathway.
Vasilescu et al. demonstrate that the levels of miR-150

in both plasma and leukocytes are associated with sepsis
aggressiveness and thus can act as a biomarker of early
sepsis [39]. Decreased miR-150 serum levels correlate with
an adverse outcome in patients with sepsis and critical ill-
ness, and circulating miR-150 serum concentrations may
be used as a potential prognostic marker in patients with
critical illness [40]. Previous studies reported that BCL11B
is not only a transcription factor specific in T-cell, but also
contributes to the lineage fidelity and the genetic and
functional programs of mature type 2 innate lymphoid cell
(ILC2) [41, 42]. In the miRNA-DEG regulatory network,
BCL11B was targeted by has-miR-150, suggesting that
has-miR-150 might be involved in the pathogenesis of
neonatal sepsis by targeting BCL11B.

Conclusions
In conclusion, a total of 275 DEGs were identified from
the sepsis samples. Besides, TSPO, ZAP70, CEBPB tar-
geting MAPK14, has-miR-150 targeting BCL11B might
act in the pathogenesis of neonatal sepsis. However, fur-
ther experimental researches are needed to confirm
these results obtained from bioinformatics analysis.
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