Open Access

Human milk glycosaminoglycans: the state of the art and future perspectives

  • Giovanni Valentino Coppa1Email author,
  • Orazio Gabrielli1,
  • Enrico Bertino3,
  • Lucia Zampini1,
  • Tiziana Galeazzi1,
  • Lucia Padella1,
  • Lucia Santoro1,
  • Rita Lucia Marchesiello1,
  • Fabio Galeotti2,
  • Francesca Maccari2 and
  • Nicola Volpi2
Italian Journal of Pediatrics201339:2

DOI: 10.1186/1824-7288-39-2

Received: 7 January 2013

Accepted: 10 January 2013

Published: 15 January 2013

Abstract

Recently, a complete characterization and detailed evaluation of the glycosaminoglycans of human milk were performed. The total glycosaminoglycans content in milk from healthy mothers having delivered term or preterm newborns showed a constant pattern which was essentially composed of two main polysaccharides: chondroitin sulfate (60-70%) and heparin (30-40%). Moreover, considerable variations of glycosaminoglycans concentration were found during the first month of lactation, the highest values being present in colostrum compared to mature milk. Metabolism and potential biological functions of human milk glycosaminoglycans are hypothesized and future studies are encouraged.

Background

In the last few decades consistent evidence has been reported on several human milk glycans (such as glycoproteins, glycolipids and especially oligosaccharides) which have been demonstrated to possess specific biological properties, positively influencing the breastfed newborn health [14]. On the contrary, only four studies are actually available in the literature on another family of complex carbohydrates, the glycosaminoglycans (GAGs) [58].

GAGs are linear heteropolysaccharides composed of a variable number of repeating disaccharidic units, which are able to regulate many cellular events and physiological processes (such as cell growth and differentiation, cell-cell and cell-matrix interaction, anti-infective and anti-inflammatory processes, etc.) [911]. On the basis of their structure and composition, GAGs are generally grouped into four main categories: 1) hyaluronic acid (HA); 2) chondroitin sulfates (CS) and dermatan sulfate (DS); (3) heparan sulfate (HS) and heparin (Hep); 4) keratan sulfate (KS).

State of the art

The first data reported in the literature on milk GAGs are those described by Shimizu et al. [5]. Their study was not performed on whole milk but exclusively focused on milk fat globule membranes. The total GAG content was 5–10 times higher in human than in bovine milk membranes. Qualitative analyses on membranes from mature milk samples demonstrated that the major GAG in both bovine and human milk was HS (70%), with the remainder 30% represented by CS.

Further information on human milk GAG composition was later provided by the study done by Newburg et al. [6]. Even if no quantitative data were reported, it was interestingly shown that GAGs isolated from human milk were able to play an important role as anti-infective agents.

Recently, a complete characterization and detailed evaluation of the GAGs of human mature milk and bovine milk were performed [7]. Great differences were found between human and bovine milk in terms of both quality and quantity (Table 1) (Figure 1). The total amount of GAGs resulted about 7 times higher in human milk compared to bovine milk. Moreover on the basis of specific investigations, it was possible to precisely define the composition of the complex mixture of GAGs in human and bovine milks: CS, DS, Hep and HA were identified in both milks. The main GAGs of human milk were represented by CS (~55%) followed by Hep (~40%), whose absolute amounts were ~23 and ~7 times respectively higher than in bovine milk. On the other hand, the main bovine milk GAG was DS (~40%) followed by Hep (~30%) and CS (~21%).
Table 1

GAGs quantitative evaluation in human and bovine milk

 

Human milk

Bovine milk

Total GAGs (mg/L)

416.2

60.2

 

GAGs (mg/L)

GAGs (mg/L)

Chondroitin Sulfate

231

13

Dermatan Sulfate

7

24

Heparin

173

21

Hyaluronic acid

5

2

https://static-content.springer.com/image/art%3A10.1186%2F1824-7288-39-2/MediaObjects/13052_2013_Article_260_Fig1_HTML.jpg
Figure 1

Percentage distribution of GAGs in human and bovine milk.

In a further study, the total GAG content in pooled milk from healthy mothers having delivered term or preterm newborns was evaluated during the first month of lactation [8]. In both term and preterm milk, GAGs showed a constant pattern which was essentially composed of two main polysaccharides: CS (60-70%) and Hep (30-40%). Moreover, considerable variations of GAG concentration were found during the period studied. In fact, highest values were present at 4th day (9.3 and 3.8 g/L in preterm and term milk respectively), followed by a progressive decrease up to 30th day (4.3 and 0.4 g/L) (Figure 2).
https://static-content.springer.com/image/art%3A10.1186%2F1824-7288-39-2/MediaObjects/13052_2013_Article_260_Fig2_HTML.jpg
Figure 2

Content of GAGs in term and preterm human milk during the first month of lactation.

Metabolism and potential biological functions

In the alveolar cells of the mammary gland, the synthetized GAG chains are first linked to a protein “core” and then excreted into the glandular ductus as the macromolecular complex of Proteoglycans (PGs) (Figure 3a and b). From the above reported results, it follows that breastfed infants ingest consistent daily amounts of GAGs (as PGs). However, at present, no data are available on their metabolic fate.
https://static-content.springer.com/image/art%3A10.1186%2F1824-7288-39-2/MediaObjects/13052_2013_Article_260_Fig3_HTML.jpg
Figure 3

Synthesis (a) and structure (b) of a proteoglycan.

It seems reasonable to hypothesize (Figure 4) that at the small intestine level the proteolytic enzymes secreted in the pancreatic juice digest the “core” protein of PGs into aminoacids, which are absorbed, resulting in the liberation of free GAG chains. As the intestinal wall and microvilli lack specific glycosidases and sulfatases, the free GAGs should persist undegraded in the upper part of the digestive system [12]. Recent studies provide further demonstration of the physiological role of GAGs in several biological processes [9, 11]. In particular, it has been shown that some cell surface receptors are constituted by GAGs [11], participating directly, in this way, in the regulation of the infective processes. Therefore, human milk GAGs could have the power to interact with pathogens and to compete for their adhesion to the intestinal wall, as already demonstrated for other human milk glycans [1, 2, 13]. In fact, the first data available on the anti-infective role of human milk GAGs are those reported by Newburg et al. [6]. Detailed analyses performed on isolated GAGs demonstrate the presence of a complex mixture made up of DS, Hep, HS and CS. For the first time, these authors demonstrated that CS isolated from human milk was able to inhibit the binding of the HIV envelop glycoprotein gp120 to the cellular CD4 receptor. Moreover, it was recently demonstrated that HA fragments play an important role in promoting an innate antimicrobial effect in intestinal epithelial cells [14]. On the basis of these data we can suppose that the high concentration of human milk GAGs could be useful for the newborn in defence processes against several pathogens (viruses, bacteria and their toxins).
https://static-content.springer.com/image/art%3A10.1186%2F1824-7288-39-2/MediaObjects/13052_2013_Article_260_Fig4_HTML.jpg
Figure 4

Hypothetic metabolic fate and biological functions of human milk GAGs.

At the same level of the small intestine, the GAGs, due to their well-known properties, could contribute to the antioxidant effect of human milk, which is particularly important during the neonatal period. In fact, it has been demonstrated that CS (and other GAGs) are able to stimulate the pathway which induces the activation of antioxidant enzymes [15], and which is particularly important in preterm infants endowed with an immature defence system.

Furthermore, the undigested GAGs, reaching the colon, could behave as prebiotics, contributing to the development of bifidogenic flora as it has been demonstrated that bifidobacteria possess specific enzymes involved in the metabolism of carbohydrates [16].

Finally, a certain amount of undigested GAGs could be present in infant feces behaving as dietary fibers according to international definition.

Future perspectives

From the review of the literature, it clearly emerges that further studies are necessary to explore the metabolic fate, the physiological role and other human milk GAGs possible positive effects on the newborn’s health. As for other glycan components such as oligosaccharides, further in vitro and in vivo studies should be performed to achieve more information on their possible antinfective, antioxidant and prebiotic effects.

Finally, new knowledge on human milk components is the starting basis for the preparation of improved infant formulas in the future.

Abbreviations

GAGs: 

Glycosaminoglycans

HA: 

Hyaluronic acid

CS: 

Chondroitin sulfates

DS: 

Dermatan sulfate

HS: 

Heparan sulphate

Hep: 

Heparin

KS: 

Keratan sulphate

PGs: 

Proteoglycans.

Declarations

Authors’ Affiliations

(1)
Pediatric Division, Department of Clinical Sciences, Polytechnic University of Marche
(2)
Department of Biology, University of Modena & Reggio Emilia
(3)
Neonatal Intensive Care Unit, Department of Pediatrics, Faculty of Medicine and Surgey, University of Turin

References

  1. Hanson LA: Feeding and infant development breast-feeding and immune function. Proc Nutr Soc. 2007, 66: 384-396. 10.1017/S0029665107005654.View ArticlePubMed
  2. Newburg DS: Neonatal protection by an innate immune system of human milk consisting of oligosaccharides and glycans. J Anim Sci. 2009, 87 (Suppl 13): 26-34.PubMed
  3. Gabrielli O, Zampini L, Galeazzi T, Padella L, Santoro l, Peila C, Giuliani F, Bertino E, Fabris C, Coppa GV: Preterm milk oligosaccharides during the first month of lactation. Pediatrics. 2011, 128: e1520-e1531. 10.1542/peds.2011-1206.View ArticlePubMed
  4. Bode L: Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 2012, 22: 1147-1162. 10.1093/glycob/cws074.PubMed CentralView ArticlePubMed
  5. Shimizu M, Uryu N, Yamauchi K: Presence of heparin sulphate in the fat globule membrane of bovine and human milk. Agr Biol Chem. 1981, 45: 741-745. 10.1271/bbb1961.45.741.View Article
  6. Newburg DS, Linhardt RJ, Ampofo SA, Yolken RH: Human milk glycosaminoglycans inhibit HIV glycoprotein gp120 binding to its host cell CD4 receptor. J Nutr. 1995, 125: 419-424.PubMed
  7. Coppa GV, Gabrielli O, Buzzega D, Zampini L, Galeazzi T, Maccari F, Bertino E, Volpi N: Composition and structure elucidation of human milk glycosaminoglycans. Glycobiology. 2011, 21: 295-303. 10.1093/glycob/cwq164.View ArticlePubMed
  8. Coppa GV, Gabrielli O, Zampini L, Galeazzi T, Maccari F, Buzzega D, Galeotti F, Bertino E, Volpi N: Glycosaminoglycan content in term and preterm milk during the first month of lactation. Neonatology. 2012, 101: 74-76. 10.1159/000330848.View ArticlePubMed
  9. Jackson RJ, Bush SJ, Cardin AD: Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol Rev. 1991, 71: 481-539.PubMed
  10. Raman R, Sasiseskharan V, Sasiseskharan R: Structural insites into biological roles of protein-glycacosaminoglycan interactions. Chem Biol. 2005, 12: 267-277. 10.1016/j.chembiol.2004.11.020.View ArticlePubMed
  11. Sasiseskharan R, Raman R, Prabhakar V: Glycomics approach to structure-finction relationships of glycosaminoglycans. Annu Rev Biomed Eng. 2006, 8: 181-231. 10.1146/annurev.bioeng.8.061505.095745.View Article
  12. Roughley PJ, Mort JS: Catabolism of proteoglycans. Proteoglycans: structure, biology and molecular interactions. Edited by: Iozzo RV. 2000, New York: Marcel Dekker Inc, 93-113.
  13. Coppa GV, Zampini l, Galeazzi T, Facinelli B, Ferrante L, Capretti R, Gabrielli O: Human milk oligosaccharides inhibit the adhesion to Caco-2 cells of diarrheal pathogens: Escherichia coli, Vibrio cholerae and Salmonella fyris. Pediatr Res. 2006, 59: 377-382. 10.1203/01.pdr.0000200805.45593.17.View ArticlePubMed
  14. Hill DR, Kessler SP, Rho HK, Cowman MK, de la Motte CA: Specific-sized hyaluronan fragments promote expression of human β-defensin 2 in intestinal epithelium. J Biol Chem. 2012, 287: 30610-30624. 10.1074/jbc.M112.356238.PubMed CentralView ArticlePubMed
  15. Egea J, Garcia AG, Verges J, Montell E, Lopez MG: Antioxidant antiinflammatory and neuroprotective actions of chondroitin sulphate and proteoglycans. Osteoarthritis Cartilage. 2010, 18: S24-S27.View ArticlePubMed
  16. Ventura M, Canchaya C, Fitzgerald GF, Gupta RS, Van Sinderen D: Genomics as a means to understand bacterial phylogeny and ecological adaptation: the case of bifidobacteria. Antonie Leeuwenhoek. 2007, 91: 351-371. 10.1007/s10482-006-9122-6.View ArticlePubMed

Copyright

© Coppa et al.; licensee BioMed Central Ltd. 2013

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Advertisement