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pediatric non-central nervous system
malignancies: an overview of clinical and
dosimetric outcomes
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Abstract

Radiation therapy represents an important approach in the therapeutic management of children and adolescents
with malignant tumors and its application with modern techniques – including Proton Beam Therapy (PBT) – is of
great interest. In particular, potential radiation-induced injuries and secondary malignancies – also associated to the
prolonged life expectancy of patients – are still questions of concern that increase the debate on the usefulness of
PBT in pediatric treatments. This paper presents a literary review of current applications of PBT in non-Central
Nervous System pediatric tumors (such as retinoblastoma, Hodgkin Lymphoma, Wilms tumor, bone and soft tissues
sarcomas). We specifically reported clinical results achieved with PBT and dosimetric comparisons between PBT and
the most common photon-therapy techniques. The analysis emphasizes that PBT minimizes radiation doses to
healthy growing organs, suggesting for reduced risks of late side-effects and radiation-induced secondary
malignancies. Extended follow up and confirms by prospective clinical trials should support the effectiveness and
long-term tolerance of PBT in the considered setting.
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Introduction
Irradiation of primary or post-operative tumor site rep-
resents a fundamental part of the standard therapies for
cancer due to the capability of X-rays to damage tumor
cells DNA and induce tumor cells death [1]. Besides
technological advances in photon beam radiotherapy
(RT), potential long-term side-effects can affect neuro-
cognitive and endocrine functions, as well as body-
growth and fertility [2], in oncological pediatric patients.
Indeed, it is well known that the use of RT in children
and adolescents is particularly challenging [2] because of
the increased risk of late toxicities (a serious concern in
patients aged under 3 years [2, 3]) and secondary malig-
nant neoplasms (SMNs) which are related to the higher
radiation sensitivity and the increased cell-turnover of
developing tissues [2].

Proton Beam Therapy (PBT) is a modality of charged
particle therapy which provides excellent dose-
distributions and an increased dose-sparing of normal
tissues due to the absence of an exit-dose and an
entrance-dose which is much lower than the target dose
[1, 4]. These physical characteristics and the aforemen-
tionated dosimetric advantages suggest that PBT could
be proposed as an alternative approach to conventional
photon RT for the therapeutic management of malignant
diseases [5, 6]. Furthermore, besides PBT benefits in
normal tissues dose-sparing [3, 7–10], early clinical out-
comes [4] also emphasized its advantages. Nevertheless,
the question of PBT effectiveness and safety in compari-
son to modern high-conformal photon techniques is still
debated [11, 12] due to the lack of long-term clinical
data.
We observed that only selected papers analyzed par-

ticular critical issues related to proton treatments and
their results were limited. Lodge at al [13]. considered
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that the use of protons for large tumors located next to
critical organs at risk (OARs) was suggested, even if they
did not investigated the role of PBT in pediatric patients
[5]. Olsen [14] and Brada [15] summarized that PBT did
not achieved sufficient evidences supporting its in-
creased efficacy compared to other RT. Allen et al. [5]
evidenced the benefit of PBT over photon treatments for
pediatric Central Nervous System (CNS) tumors and
other malignancies, but they underlined that existing
data were still limited to provide conclusive recommen-
dations for pediatric non-CNS tumors. In the Consensus
Report from the Stockholm Pediatric Proton Therapy
Conference published in 2016 [16], expert opinions on
current indications for PBT in pediatrics confirmed that
the majority of pediatric cancers which require RT
should be treated with PBT. Protons were assumed as a
preferred indication for most common pediatric CNS tu-
mors, as well as for skull base tumors and retinoblast-
oma [16]. Nevertheless, there were different opinions on
Hodgkin lymphoma – curable with lower radiation doses –
and on rhabdomyosarcoma and Ewing sarcoma, for which
the relative effectiveness of PBT depends on the tumor
location [16].
Worldwide, the number of institutions offering PBT is

gradually increasing and in the next years extensive data
will provide more information on PBT effectiveness and
cost-benefit rates in different scenarios.
We present a literature review of PBT performed for

non-CNS pediatric tumors while specifically synthesizing
its dosimetric and clinical advantages, which are chan-
ging the perspectives in radiation treatments. Whenever
possible, we provided a discussion on emerging critical
issues. We concluded this review with a summary of on-
going trials.

Materials and methods
A PubMed search was carried out using the following
Medical Subject Heading (MeSH) terms and arrange-
ments: (((particle therapy[MeSH Terms]) OR proton
beam therapy[MeSH Terms]) AND radiation therapy[-
MeSH Terms]) AND pediatric neoplasms[MeSH Terms]).
Dosimetric comparison studies between PBT and photon-
RT, as well as clinical studies and case series assessing out-
comes of PBT in the most common pediatric non-CNS
malignancies (retinoblastoma, Hodgkin lymphoma, sarco-
mas, Wilms tumor) were included in this review. We con-
sidered articles published in English from 2002 to 2018
with the aim to evaluate more recent data. Papers con-
cerning other treatments, other neoplasms, socio-
economic analyses, radiobiological and procedural issues,
as well as review articles, editorials, consensus reports,
modeling studies, case reports were excluded. Additional
references from the retrieved review articles and consen-
sus reports were also considered. Results were

summarized and reported in relation to patients’ popula-
tion and study assessment. Furthermore, for an overview
of ongoing trials evaluating the application of PBT in the
aforesaid setting, we reported an updating of studies cur-
rently registered on clinicaltrials.gov website.

Results
Among the reviewed papers satisfying the selection cri-
teria, 31 articles – mainly reporting retrospective mono-
institutional experiences – were included in a qualitative
synthesis of dosimetric (Table 1) and clinical (Table 2)
PBT outcomes (Fig. 1).

Retinoblastoma
Retinoblastoma (RB) represents the most common primary
ocular malignancy in childhood and it typically affects chil-
dren under 4 years [17]. Patients often present a germ-line
mutation of RB1 tumor suppressor gene. RT was used in
selected patients to avoid surgical enucleation, even if long-
term RT side effects such as conjunctivitis, corneal opacifi-
cation, cataract, glaucoma, vitreous hemorrhage, retinop-
athy, optic neuropathy, orbital hypoplasia were observed
[17, 47, 48]. Furthermore, although RB is a radiosensitive
tumor, the use of RT could increase the risks of radiation-
induced SMNs [12, 49], which is greater in children with
hereditary RB gene mutation [12, 17, 50]. For these reasons,
RT is currently considered as a salvage-therapy and modern
therapeutic eye-preserving approaches include crio-
ablation, laser, chemotherapy [11, 17, 49]. Various high-
conformal RT techniques (fractionated stereotactic RT,
intensity-modulated radiotherapy (IMRT), PBT) have been
adopted to spare OARs [17, 49] and to reduce radiation
side-effects [17]. PBT represents the most conformal
external-beam RT option currently available for RB [30],
since it reduces the integral dose to healthy tissues by de-
positing the majority of energy in the “Bragg peak” [17].
Krengli et al. [17], in their study on the optimization

of proton-beam arrangements for various intra-ocular
tumor locations, concluded that PBT could reduce the
risk of radiation-induced SMNs and cosmetic and func-
tional side-effects due to its dosimetric benefits (Table
1). In the treatment planning study presented by Lee
et al. [18], (Table 1), PBT achieved the best target-
coverage (which clinically might translate into a reduced
risk of tumor recurrence) and orbital bone dose-sparing
compared to photon-RT techniques.
Long-term tumor control and toxicity outcomes after

PBT were investigated by Mouw et al. [30] (Table 2)
among patients treated for early or locally-advanced dis-
ease. A high disease-local control (LC) was observed
during a prolonged follow up period both in early and
advanced cases, with no patients died for RB or develop-
ing metastatic disease; treatment-related ocular side-
effects were uncommon, many patients retained useful
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vision in the treated eye and no SMNs were observed
[30]. As focused in the PTOG/PROS/EPTN (Particle
Therapy Co-Operative Group/Pediatric Radiation Oncol-
ogy Society/European Particle Therapy Network) consen-
sus statement [11], data by Mouw et Al. suggest that
PBT should be reconsidered for early-stage patients,
even if global evidences on the reduction of SMNs-risk
using PBT are still low [46]. For this reason, although
PBT dosimetric advantages suggest its safety [12, 48, 50],
confirms from further studies with a long-term follow
up are necessary.

Hodgkin lymphoma
Hodgkin lymphoma (HL) is a malignancy which usually
affects adolescents and young adults [20] with a 5 years-
overall survival (OS) rate varying in the range between
85 and 95%, in relation to disease stage and prognostic
factors present at diagnosis [19, 51, 52]. Combined-
modality treatment regimens for early-stage HL integrate
RT for its benefits in loco-regional disease control and
overall outcome [53]. In advanced-stages, adjuvant RT is
used for patients treated with less-intensive chemother-
apy regimens or with incomplete or slow responses to
chemotherapy [54, 55]. Despite RT advantages in tumor
control, an increased risk of treatment-related chronic
toxicity in survivors have been observed. In particular,
RT on mediastinum combined with anthracyclines in-
creases the risk of cardiovascular disease (such as coro-
naropathy, valvular diseases, cardiomyopathy, arhythmia,
pericarditis) and cardiac death as late sequelae [20, 56].
Also an increased incidence of secondary breast cancer
in female survivors has been reported [19, 57, 58]. In

summary, an elevated risk of developing SMNs and car-
diovascular diseases have been observed as late side-
effects even 30 years after chemo-radiation [21, 56] and
at lower RT threshold doses [20].
When both chemotherapy and RT are necessary to

treat HL, the risk of toxicity for normal tissues could be
limited minimizing treatment field size and reducing ra-
diation doses in combined-modality regimens [20, 55,
59, 60]. High-conformal RT techniques – such as IMRT
combined with sophisticated systems for image-guidance
or PBT – also allow to reduce the risk of RT-related late
effects, with substantial benefits especially in young HL
patients which have high survival rate [20]. Indeed,
IMRT improves OARs dose-sparing in the high-dose re-
gion because of its capability to shape the dose distribu-
tion around concave structures. However, an important
IMRT disadvantage consists in the exposure of OARs to
low radiation doses [19].
Andolino et al. [19] (Table 1) compared breast-sparing

proton therapy (BS-PT) with involved-field 3D-CRT for
pediatric female HL patients and concluded that this
technique was able to markedly reduce (by 80%) breast
dose. Hoppe et al. [4, 20, 21] enrolled patients (including
adults, children and adolescents) with Stage IA-IIIB HL
and mediastinal involvement on a prospective study
comparing adjuvant involved-node proton therapy
(INPT) with 3D-CRT and IMRT. They observed [4, 21]
that PBT provided the lowest mean dose to heart, lungs
and breasts for all patients (Table 1), with an improve-
ment in dose-sparing also for esophagus and thyroid.
Authors also reported [20] the reduction of radiation
doses to all major cardiac subunits with PBT, suggesting

Fig. 1 Study selection workflow
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for a potential limitation of late cardiac toxicities, even if
confirms in long-term follow-up were necessary [20].
Another issue assessed by Hoppe et al. [4] concerns the
early clinical outcomes (Table 2) of performed INPT:
treatments were well-tolerated, with disease outcomes
similar to those obtained with conventional photon-RT;
nevertheless, a long-term follow-up was considered ne-
cessary to evaluate the likely benefit of PBT in reducing
the risk of late toxicity [4]. Similar findings were re-
ported by Wray [31] and other authors of the same re-
search group at the University of Florida Health Proton
Therapy Institute after the clinical outcomes assessment
of 22 HL patients treated with PBT.
To our knowledge, to date, no randomized studies have

assessed long-term effectiveness and tolerance of INPT
versus INRT/involved-site (IS) RT – newer photon-RT
approaches with reduced fields/volumes which are becom-
ing the new standard of care in radiation treatments for
HL in the era of modern imaging [53, 61].
To conclude, as reported also by Weber et Al. [11] –

who revised the Evidence-based Review on the Use of Proton
Therapy in Lymphoma From the Particle Therapy Coopera-
tive Group (PTCOG) Lymphoma Subcommittee [62] – the
dosimetric advantages of PBT are expected to translate into
a lower risk of late toxicities and SMNs, establishing the
foundation for PBT clinical application and further re-
searches to confirm the expected outcomes.

Sarcoma
Chordoma and Chondrosarcoma
Chordoma (CH) and chondrosarcoma (CS) are uncom-
mon neoplasms in children with relatively low metastatic
potential [37, 63]. CH can occur along the axial skeleton,
usually at the skull base or near the coccyx [11, 37]. CS
can involve the pelvis or long bones, with rare presenta-
tion at the skull base [11]. Surgery is considered the
first-line therapeutic approach [11], however total resec-
tion can rarely be achieved because of tumor proximity
to critical structures [32, 36]. Also RT planning is lim-
ited by OARs tolerance: thus, the delivered RT doses
could result in a suboptimal long-term tumor control
[32, 64]. Anyhow, because of the low metastatic poten-
tial of these tumors, LC, OS and progression free sur-
vival (PFS) are very important aspects and adjuvant
radiation treatments remain recommended. In this set-
ting PBT has established itself as an optimal approach,
especially for skull-base CH and CS [36].
Hug et al. [32] (Table 2) analyzed children with mes-

enchymal tumors invading the skull base (including CH
and CS) which were treated with fractionated proton or
combined proton-photon therapy: their data suggested
that PBT delivered after a major skull base surgery could
offer advantages in tumor control and survival. Also
Habrand et al. [33] observed excellent LC and low-grade

late toxicities after high-dose photon-proton therapy
performed in a similar setting (Table 2).
Rutz et al. [34] evaluated patients with extra-cranial

CH (Table 2) treated with postoperative spot-scanning
PBT1 (performed after a function-preserving surgery)
and observed high OS and PFS rates with acceptable
treatment tolerance. In a consecutive study, Rutz et al.
[35] (Table 2) reported satisfactory preliminary out-
comes of postoperative spot-scanning PBT delivered in
combination with or without intensity-modulated proton
therapy (IMPT). PBT was well tolerated with late ad-
verse events (mild to moderate in degree) reported only
in three cases.
The effectiveness of spot-scanning PBT for extra-

cranial CH was also evaluated by Staab et al. [37] for
adult and pediatric patients (Table 2). In this study, pa-
tients with gross residual disease before PBT and no sur-
gical stabilization (SS) obtained a 100% LC rate at 5
years; among patients who underwent prior titanium-
based SS and reconstruction of the axial skeleton, a sig-
nificant reduction (30%) of 5-year LC rate was observed.
Authors concluded that PBT achieved high rates of
tumor LC – even for large, unresectable diseases –
which were significantly better in patients without SS.
Also Rombi [38] and Ares [36] confirmed excellent out-
comes and acceptable late toxicities using fractionated
spot-scanning PBT (Table 2).
As previously observed in the PTOG/PROS/EPTN

consensus [11], since CH and CS are radioresistent tu-
mors which require high target doses, PBT could repre-
sent an ideal approach to provide target dose-escalation
with reduced overall integral dose. The results detailed
in our literature review (Table 2) are in line with data
summarized by Weber et Al. [11], who reported the 5-
years OS after PBT in the range 68–89%.

Soft tissue sarcoma
RT plays an important role in the multimodal manage-
ment of childhood sarcoma [50]. For resectable sarcoma
the standard-of-care is surgery followed by adjuvant RT
for higher-risk patients, while for unresectable tumors
neoadjuvant chemo-RT followed by surgery and adju-
vant chemotherapy is indicated [66]. A preliminary
multidisciplinary evaluation is recommended [66].
Nevertheless, the proximity to dose-limiting OARs (as
occurs in head and neck, parameningeal or paraspinal
tumor localization) could influence the radiation treat-
ment choice. Especially in these cases, PBT could repre-
sent a valid alternative RT approach to preserve patients
quality of life by reducing OARs doses.

1Spot-scanning is a PBT delivery method which provide a uniform and
complex dose-distribution with the advantage of reduced neutron con-
tamination [65]
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In Weber’s treatment planning study [23] – which
compared IMRT and IMPT for paraspinal sarcoma – an
increased dose-sparing for OARs and a potential target
dose-escalation were reported with PBT.
Timmerman et Al. [39] (Table 2) investigated the

feasibility of spot-scanning PBT in children with soft tis-
sue sarcoma (including rhabdomyosarcoma) arise in crit-
ical sites and unresectable in the majority of cases: PBT
was feasible and well tolerated, with early LC compar-
able to outcomes reported with conventional RT.

Rhabdomyosarcoma
Rhabdomyosarcoma (RMS) is the most common soft-
tissue sarcoma in childhood which represents a highly-
malignant and locally-invasive neoplasm [41]. This tumor
commonly occurs in sites within head and neck present-
ing also parameningeal locations [67]. A potential reduc-
tion of radiation-induced SMNs using PBT was suggested
by a model-based secondary cancer risk assessment per-
formed by Miralbell et al. [24]. PBT has also provided
dosimetric and clinical advantages, as highlighted in the
following summarized studies (Tables 1 and 2).
Ladra et Al. [25] published the first comparison of

proton vs photon dosimetry from a prospective multi-
institutional phase II clinical trial which enrolled 54 chil-
dren (the first largest published dosimetric series for
RMS); they demonstrated a lower integral dose, an in-
creased OARs dose-sparing and satisfactory clinical out-
comes with passively-scattered PBT. Leiser et Al. [40]
observed minimal late toxicity and improved quality of
life in 83 RMS children treated with pencil beam scan-
ning PBT combined with chemotherapy. Confirms of
the short-term effect and acute tolerability of PBT derive
from a recent published experience among 55 RMS pa-
tients in Japan [44].
RT and chemotherapy represent the main treatment

choices for parameningeal rhabdomyosarcoma (PRMS).
Kozak et al. [26] compared PBT and IMRT plans for
pediatric PRMS: both plans allowed acceptable and com-
parable target-coverage, but the higher dose-conformity
provided by PBT resulted in a significant improvement
of dose-sparing for the majority of the considered OARs.
Childs [41] reported tumor LC and survival rates after
PBT comparable to those in literature controls. Weber
et al. [42] (Table 2) reported the clinical outcomes of 39
pediatric PRMS patients treated with PBT and chemo-
therapy, evaluated over a median follow-up of 41
months: authors observed encouraging results, in line
with the previously reported evidences on the safety and
effectiveness of PBT in the considered setting [42].
Cure rates for genitourinary (e.g. bladder/prostate)

RMS with a multimodal approach are 70 to 80%, but sig-
nificant late side-effects are often observed [27]. Cotter
et al. [27] reported comparable target dosimetry between

PBT and IMRT in this setting, but PBT led to a signifi-
cant decrease in mean dose to the considered OARs
(bladder, testes, femoral heads, growth plates and pelvic
bones), suggesting for a reduced risk of late toxicity. Lee
et al. [18] compared dose-distributions and dose-volume
histograms (DVHs) of 3D-CRT, electron-RT, IMRT and
PBT plans for three pediatric disease sites, including pelvic
sarcomas: PBT was superior in eliminating any dose to the
ovaries and reducing doses to the pelvic bones and verte-
brae. Due to these advantages, PBT in pelvic sarcoma could
have the potential clinical benefit of preserving reproductive
and hormonal functions, as well as body growth. Confirms
from extended clinical data are necessary.
Pediatric patients with orbital RMS often receive com-

bined chemotherapy and RT [28]. However, late effects
of photon RT can potentially affect functional and cos-
metic results [28]. PBT has shown to provide excellent
target dose-distributions with increased OARs dose-
sparing. Indeed, Yock et al. [28] reported PBT advan-
tages in target-coverage and doses to brain, pituitary
gland, hypothalamus, temporal lobes and ipsilateral/
contralateral orbital structures as compared to 3D-CRT,
even if tumor size and location affected the degree of
OARs dose-sparing. Local and distant tumor control
with PBT compared favorably to previous published
results [28].
Available dosimetric and clinical results of PBT for RMS

are promising. As considered also by Weber et Al. [11],
PBT could offer an alternative therapeutic approach that
should be able to reduce side effects on developing organs.

Ewing’s sarcoma
Ewing’s sarcoma is a rare malignant bone and/or soft tis-
sue small blue round cell cancer [11], often occurring in
sites that are not easily resected [45]. It is highly respon-
sive to RT, which has been widely used [45]. In particu-
lar, as summarized by Rombi [45, 50], RT is prescribed
in the postoperative setting (for patients with close or
positive resection margins and in cases with a poor or
slow clinical response to neoadjuvant chemotherapy) or
in children with unresectable tumors/higher risk of post-
surgical morbidity. Nevertheless, also definitive RT pro-
duces side-effects as a result of normal tissues exposure
[45] and PBT has been suggested as an alternative treat-
ment option to reduce this risk [45, 68].
In particular, Rombi et al. [45] reported (Table 2) good

clinical outcomes and treatment tolerance among 30
children treated with PBT, supporting the premise that
protons could be used similarly to photons to achieve
analogous disease control rates at comparable doses.
Even if available data of PBT application in this setting
are still limited to produce significant evidences [46], the
main clear advantage of protons is to reduce normal tis-
sue doses. The potential reduction of late toxicities and
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the possibility of target dose-escalation [11, 68] could
represent consequent benefits.

Wilms tumors
In patients affected by Wilms tumor – the most com-
mon childhood renal neoplasm [11] – RT is indicated to
improve LC when incomplete resection, higher stage or
unfavorable histology occur [11].
Few studies on PBT in this setting are reported. Hill-

brand et al. [29] described a substantial reduction in
mean liver and kidney dose with PBT compared to con-
ventional RT and IMRT (Table 1). SMNs risk with
scanned beams-PBT was inferior to IMRT and passively-
scattered PBT (which is associated to secondary neu-
trons production) (Table 2). Also the PTOG/PROS/
EPTN consensus statement [11] has underlined the im-
provement in OARs dose-sparing with PBT, even if fur-
ther evaluations on long-term local failure and patients
survival are required.

Ongoing trials
Among the ongoing trials on PBT in pediatric patients
registered (clinicaltrials.gov) at the time of this review,
fifteen were analyzing outcomes of PBT in the discussed
non-CNS malignancies: six were active but not recruit-
ing, five were in recruiting status, one was completed
and three were terminated.
Figure 2 regroups 11 trials which were evaluating spe-

cific pediatric non-CNS tumors.
Six studies were specifically assessing dosimetric issues

(NCT01502150, NCT02070393, NCT00592592,
NCT00850200, NCT00592293, NCT01751412). The
main goal of these prospective study is to obtain infor-
mation on PBT effectiveness and toxicity, as well as
wider dosimetric data from treatment plans, with the

aim to improve the planning and delivery of PBT for fu-
ture approaches in pediatric patients.

Discussion
We present a summary of dosimetric and clinical results
achieved with PBT in pediatric patients affected by non-
CNS tumors.
At the time of our review, recent authoritative reports

[11] have suggested that existing clinical data is still too
preliminary to add new directions in clinical practice.
Nevertheless, dosimetric advantages of PBT over photon
techniques were well-known and knowledge of charged
particles’ physical characteristics was consolidated. Bas-
ing on the concept that dosimetric data could lead to a
prediction of clinical outcomes, we tried to assess if – in
particular cases – PBT dosimetric benefits could trans-
late into clinical gains.
In primis, our research confirmed that PBT improves

OARs dose-sparing; additionally, PBT with spot-scanning/
pencil beam scanning and IMPT modalities reduce neu-
tron dose-contamination. These are crucial topics that in-
crease radiation oncologists’ interest on PBT application
in pediatric treatments, especially when radioresistent tu-
mors arise next to critical anatomic sites require higher ra-
diation doses or a dose-escalation [23, 26] (e.g. paraspinal
and parameningeal sarcoma).
The overall actual clinical results are confirmed as

not-exhaustive to provide high-level evidences in all in-
dications [11, 46]. Among the retrieved articles, only few
studies [12, 30] reported long-term clinical data. Despite
early tumor control and patients survival rates with PBT
resulted high (Table 2), long-term clinical results are
mandatory to assess treatment effectiveness and toler-
ance in pediatric cohorts.

Fig. 2 Ongoing trials evaluating specific primary pediatric non-CNS tumors
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Costs and difficulties to access to PBT centers (de-
pending on the small number of centers able to per-
form PBT) are still elevated [69] and could affect the
prospect to provide significant evidences on large
sample sizes. To overcome these difficulties, compre-
hensive database or wider registries [11] could sup-
port analyses aimed to define the indications for PBT
in the multidisciplinary management of pediatric non-
CNS tumors.
Careful analyses have also to be performed to

balance PBT cost-effectiveness with requests of
managing potential late effects related to different RT
approaches.
Moreover, further studies with appropriate methodolo-

gies are required to answer to actual recurring questions,
such as: What differences in OARs-sparing and toler-
ance profiles can be observed between PBT and modern
high-conformal photon techniques supported by sophisti-
cated image-guidance systems [5]? Which potential out-
comes/effects could be associated to PBT combined with
new drugs [11]? Is radiobiology of protons clearly under-
stood [6, 11, 68]? Indeed, one major limitation of previous
published works – besides the retrospective nature of their
observations – was the comparison between PBT and
photon-RT with no advanced technologies [11, 12]. Mod-
ern technologies for image-guidance2 and treatment plan-
ning (e.g. image-guided IMRT on limited volumes) have
improved dose-conformity and OARs dose-sparing even
with photon-therapy [11, 49]. Nevertheless, clinical results
of modern photon-IGRT are still limited. Additionally, in
IMRT treatments, developing OARs remain at risk of
non-target radiation dose [11] and could be at increased
risk of SMNs as compared to conventional 3D-CRT [2]
due to low radiation doses [1].
In 2018 one of the first treatment planning com-

parison between IMPT and highly sophisticated deep-
inspiration breath hold Volumetric Modulated Arc
Therapy (VMAT) in adults has been published [71]:
even if VMAT was planned in a very experienced
center, IMPT provided higher target coverage and re-
duced mean doses to the considered OARs [71].
These results are promising and could produce impli-
cations in pediatric research, inducing radiation on-
cologists to further consider PBT application and
promote clinical trials.

Conclusion
Since the long life expectancy of patients is a major issue
in oncological pediatric treatments, adequate analyses on
RT late effects become necessary. PBT has provided

dosimetric advantages for normal tissues as compared to
photon-RT, but long-term clinical results and compari-
sons with modern photon-RT outcomes are still re-
quired. Ongoing and future investigations should clearly
define the role of PBT in the multimodal management
of the most common pediatric non-CNS tumors.
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