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CASE REPORT
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Abstract 

Background  In this study, we used targeted next-generation sequencing (NGS) to investigate the genetic basis 
of congenital hypothyroidism (CH) in a 19-year-old Tunisian man who presented with severe hypothyroidism 
and goiter.

Case presentation  The propositus reported the appearance of goiter when he was 18. Importantly, he did 
not show signs of mental retardation, and his growth was proportionate. A partial organification defect was detected 
through the perchlorate-induced iodide discharge test. NGS identified a novel homozygous mutation in exon 18 
of the SLC26A7 gene (P628Qfs*11), which encodes for a new iodide transporter. This variant is predicted to result 
in a truncated protein. Notably, the patient’s euthyroid brother was heterozygous for the same mutation. No renal 
acid–base abnormalities were found and the administration of 1 mg of iodine failed to correct hypothyroidism.

Conclusions  We described the first case of goitrous CH due to a homozygous mutation of the SLC26A7 gene diag-
nosed during late adolescence.
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Background
Congenital hypothyroidism (CH) may result from thyroid 
dysgenesis (80%) or dyshormonogenesis (20%), the latter 
due to mutations in genes involved in thyroid hormone 
synthesis, namely NIS, DUOX2, DUOXA2, TG, TPO, 
SLC26A4, and DEHAL1 [1–3]. SLC26A7, also known as 
a Cl-/HCO3- exchanger in the kidney [4–7], is part of the 

SLC26 transporter family, which includes multiple anion 
exchangers such as pendrin, with an affinity for iodide 
and chloride. This molecule has been identified as a new 
iodide transporter expressed at the apical membrane of 
thyroid follicular cells, playing a significant role in thyroid 
hormone biosynthesis. Recent exome sequencing studies 
have implicated SLC26A7 gene mutations as a new cause 
of CH [8–10]. In the study, we used targeted Next Gener-
ation Sequencing (NGS) to investigate a young man with 
goiter and hypothyroidism. This led to the discovery of a 
novel homozygous mutation in exon 18 of the SLC26A7 
gene (P628Qfs*11), predicted to translate into a trun-
cated protein.
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Case presentation
The patient was a 19-year-old Tunisian man who moved 
to Italy in 2021. Two months after his arrival, he expe-
rienced symptomatic neck enlargement, which was con-
firmed as a diffuse thyroid goiter by ultrasound (US). 
Initial blood tests revealed severe primary hypothyroid-
ism (FT4 0.06 ng/dL n.v. 0.90–1.70, FT3 0.50 pg/mL n.v 
2.10–4.30, TSH 396.80 µIU/mL n.v. 0.27–4.20) and the 
patient was promptly referred to our Center for further 
investigations. Notably, he exhibited no signs of mental 

retardation or explicit hypothyroidism symptoms. He 
reported no personal or familial history of thyroid disease 
or medication use. At the time of admission, his height 
was 1,76 m, his weight 62,5 kg, and his body mass index 
20,2  kg/m2, indicative of normal harmonious growth. 
Physical examination showed a myxedematous face, with 
periorbital and labial edema, and neck examination iden-
tified a large diffuse goiter. No other signs of hypothyroid-
ism, such as macroglossia, umbilical hernia or cutaneous 
annexes abnormalities were detected. The patient pre-
sented with severe primary hypothyroidism, as indi-
cated by thyroid function tests (Table 1), and high levels 
of transaminases and lactate dehydrogenase, compatible 
with the state of hypothyroidism (data not shown). Ultra-
sound confirmed a diffuse goiter (thyroid volume 94 ml). 
A tru-cut biopsy showed a micro-macrofollicular thyroid 
with hyperplastic features. Autoimmune and infiltra-
tive thyroid diseases were excluded, and no iatrogenic/
toxic implication was detected. Thyroid scintigraphy with 
131I showed increased uptake (81.6% and 98.3% after 
3 and 24  h, respectively) (Fig.  1a) and the perchlorate-
induced iodide discharge test indicated a 31.8% discharge 
rate (Fig.  1b), suggesting a partial organification defect. 
L-thyroxine (LT4) replacement therapy was initiated and 
titrated, resulting in euthyroidism and goiter reduction 
(thyroid volume 41  ml). Urinary parameters were also 

Table 1  Patient’s serum thyroid function tests at the time of 
admission in our hospital

Abbreviations: FT4 Free thyroxine, FT3 Free triiodothyronine, rT3 Reverse free 
triiodothyronine, TSH Thyroid stimulating hormone, Tg Thyreoglobulin, TgAb 
Anti-thyroglobulin antibodies, AbTPO Antithyroid peroxidase antibodies

Thyroid Parameter Value Reference Range

FT4 (ng/dL)  < 0.1 0.7 – 1.7

FT3 (ng/L) 1.73 2.7 – 5.7

rT3 (ng/mL) 0,077 0,069 – 0,262

TSH (mIU/L) 348 0.4 – 4

Tg (ng/mL) 3724.68  < 35

AbTg (IU/mL)  < 1  < 30

AbTPO (IU/mL)  < 1  < 35

Fig. 1  Thyroid scintigraphy with 131I (a) and perchlorate discharge test (b)
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evaluated to assess potential kidney-related fluids and 
electrolytes alterations, but no significant abnormalities 
were observed (Table  2). The patient’s brother, the only 
relative available for examination, was clinically and bio-
chemically euthyroid (FT4 1.06 ng/dL; FT3 5.16 pg/mL; 
TSH 1.1 mIU/mL; AbTPO and AbTg undetectable).

Thyroid morphology and function were evaluated 
using thyroid ultrasound, perchlorate discharge test as 
well as measurements of serum FT4, FT3, TSH, anti-TG 
and anti-TPO antibodies, as described [11]. A twenty-
four-hour urine collection was performed to determine 
urine ionic composition via potentiometric system. Writ-
ten informed consent for genetic analyses and for the sci-
entific use of data were obtained from the proband and 
his brother in accordance with the Declaration of Hel-
sinki and subsequent amendments (Good Clinical Prac-
tice guidelines).

Targeted NGS was conducted to investigate the cause 
of the goitrous hypothyroidism in our patient. We 
designed a custom panel targeting 34 genes involved in 
primary CH pathogenesis [10, 12–16] (Table 3). Genomic 
DNA was isolated from peripheral blood cells. For library 
preparation, we used the SureSelect QXT Reagent Kit 
(Agilent Technologies Inc., Santa Clara, CA, USA). Cus-
tom capture probes were then hybridized to the target 
sequences of the library for sequence enrichment. The 
enriched library was amplified using dual indexing prim-
ers. Equimolar amounts of multiple libraries were pooled 
into a single sample and sequenced on an Illumina 
MiSeq Dx System platform (Illumina Inc, San Diego, CA, 
USA) using the MiSeq Reagent Nano Kit V2 300 Cycles 
(2 × 151 bp paired-end run). The MiSeq platform gener-
ated a pair of FastQ files per sample suitable for second-
ary analysis with SureCall NGS software version 4.2.1 
(Agilent Technologies Inc., Santa Clara, CA, USA). We 
performed in silico analysis of clinically relevant vari-
ants using the free web-based softwares Mutation Taster, 

PROVEAN and MutPred to estimate the variant’s impact 
on the gene product. The selected variants were validated 
by Sanger sequencing [17]. Segregation analysis was sub-
sequently performed.

SureCall software identified 6 pathogenic gene vari-
ants, five of which were UTR or non-coding transcript 
variants for the IYD and HOXB3 genes. The sixth vari-
ant, identified as chr8:92406214 AC > A, was located in 
the coding region of the SLC26A7 gene. This variant, 
registered as dbSNP ID rs768718640, affected tran-
scripts NM_001282356, NM_001282357, NM_052832, 

Table 2  Patient’s urinary parameters

Patient’s urinary parameters evaluated to assess potential kidney-related fluids 
and electrolytes alterations associated a posteriori with the SLC26A7 gene 
mutation

Urinary Parameter Value Reference Range

pH 6.0 5.5 – 7.5

Creatinine (mg/24 h) 1760 980—2200

Sodium (mEq/24 h) 154 40—220

Potassium (mEq/24 h) 46 25—125

Calcium (mg/24 h) 110 100—300

Magnesium (mg/24 h) 130 72.9 – 121.5

Albumin (mg/24 h) 4  < 30

Diuresis 1000 ml

Table 3  Custom panel targeting 34 genes involved in primary 
CH pathogenesis

Name, chromosome localization and NCBI reference transcript of the 34 
candidate genes included in NGS panel

Gene Region NCBI RefSeq

ASXL3 chr18: 31158173–31331169 NM_030632.3

CDCA8 chr1: 38158080–38175401 NM_018101

DIO1 chr1: 54356902–54376769 NM_000792.7

DIO2 chr14: 80663859–80854110 NM_000793

DIO3 chr14: 102027678–102029799 NM_001362

DNAJC17 chr15:41057349–41099686 NM_018163.3

DUOX1 chr15: 45422121–45457784 NM_017434

DUOX2 chr15: 45384838–45406552 NM_014080

DUOXA1 chr15: 45409554–45422146 NM_144565

DUOXA2 chr15: 45406509–45410629 NM_207581

GLIS3 chr9: 3824117–4348402 NM_152629

GNAS chr20: 57414763–57486261 NM_000516.7

HHEX chr10: 94447935–94455414 NM_002729.5

HOXB3 chr17: 46626222–46682284 NM_001330322

HOXD3 chr2: 177001330–177037840 NM_006898.5

IYD chr6: 150690018–150727115 NM_203395.3

JAG1 chr20: 10618322–10654704 NM_000214.3

NKX2-5 chr5: 172659102–172662370 NM_001166175

NTN1 chr17: 8924817–9147327 NM_004822.3

PAX8 chr2: 113973564–114036537 NM_003466.4

SECISBP2 chr9: 91933405–91974588 NM_024077.5

SLC16A2 chrX: 73641075–73753762 NM_006517.5

SLC26A4 chr7: 107301070–107358264 NM_000441.2

SLC26A7 chr8: 92221712–92410393 NM_001282356

SLC5A5 chr19: 17982744–18005993 NM_000453.3

TBX1 chr22: 19744216–19771126 NM_080647

TG chr8: 133879193–134147157 NM_003235.5

THRA chr17: 38214533–38250130 NM_001190918

THRB chr3: 24158634–24537257 NM_000461

TPO chr2: 1377985–1547493 NM_000547

TSHR chr14: 81421323–81612660 NM_000369.5

TTF1  chr14: 36516392-36521149  NM_001079668.3

TTF2  chr9: 97853226-97856717  NM_004473.4

TUBB1 chr20: 57594299–57601719 NM_030773.4
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and NM_134266, leading to a frameshift mutation with 
a high impact. Specifically, the homozygous deletion of 
the C at position 1883 of the exon 18 of the SLC26A7 
gene caused a proline to glutamine substitution at 
position 628 of the protein, a frameshift, and a forma-
tion of a stop codon (TAA) after 11 amino acids. Gno-
mAD Genome indicated a minor allele frequency of 
0.00002833 suggesting that the variant is exceptionally 
rare in the general population. The new variant called 
c.1883delC or p.P628Qfs*11 was not present in ClinVar 
and was predicted to be pathogenic by MutationTaster, 
PROVEAN and MutPred. The Exome Aggregation 
Consortium accessed in January 2023 did not report 
homozygous cases (ExAC, https://​gnomad.​broad​insti​
tute.​org/) for this truncating variant. Sanger sequenc-
ing confirmed the presence of the homozygous and 
heterozygous P628Qfs*11 mutation in the proband and 
the brother, respectively. The proband family tree and 
sequence electropherograms were illustrated in Fig. 2.

Given that the 30 μg iodide/day supplementation par-
tially reversed hypothyroidism in Slc26a7-null male 
mice [8], we suggested to the patient a treatment trial 
with 1  mg iodide/day after LT4 suspension (TSH 5,72 
mIU/L; FT3 5,25 ng/L; FT4 1,02 ng/dL). However, after 
13 days, we ceased this treatment and reintroduced LT4 
due to the decline of thyroid hormonal profile and the 
onset of an acute myopericarditis (TSH 17,4 mIU/L; 
FT4 0,65 ng/dL).

Discussion and conclusions
We report the case of a 19-year-old man with late-onset 
dyshormonogenic goiter and hypothyroidism. Thy-
roid ultrasound revealed diffuse goiter, tracer thyroid 
uptake was elevated, and the perchlorate-induced iodide 
discharge test showed a partial organification defect. 
NGS analysis detected a novel homozygous mutation 
(P628Qfs*11) in exon 18 of the SLC26A7 gene, result-
ing in a truncated protein. In particular, the P628Qfs*11 
mutation determines a stop codon at the same position 
of F631Lfs*8 mutation described by Cangul et al. [8] that, 
by homology modeling, was predicted to destabilize the 
carboxyterminal sulfate transporter and anti-sigma fac-
tor antagonists (STAS) domain, which is required for 
membrane localization and exchanger function. The 
P628Qfs*11 mutant is predicted to remain trapped inside 
the cells as the F631Lfs*8 mutant, being not able to 
migrate on the cell membrane.

The first SLC26A7 gene mutations were described 
in 2018, identified through NGS in Arabian patients 
affected by dyshormonogenic CH [10]. A study by Can-
gul et  al. examined 6 families [8], in which at least one 
case of CH due to SLC26A7 homozygous mutations was 
present. All 13 homozygous carriers of SLC26A7 muta-
tions had CH, with goiter in 8 cases. Heterozygous car-
riers were euthyroid. Three of these families harbor the 
F631Lfs*8 mutation and CH was recognized by neonatal 
screening (NS) in homozygous subjects for the variant. 
In our case NS data were not available, but the absence 

Fig. 2  Sanger sequencing and segregation analysis of the pathogenic variant of the SLC26A7 gene. Patient’s sequence electropherogram showing 
the homozygous deletion of the C (a), brother’s sequence electropherogram showing the heterozygous deletion of the C (b) and family pedigree 
(c). Empty symbols with a “?” inside represent family members not investigated

https://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
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of intellectual retardation and the normal growth sug-
gest late onset hypothyroidism. Nevertheless, we can not 
exclude an early initiation of LT4 replacement therapy 
for CH, which was then interrupted and denied by the 
patient.

Similarly, two Japanese siblings with goitrous CH were 
reported to have a homozygous nonsense mutation in the 
SLC26A7 gene (p.Gln500Ter) [9]. In the 15-day-old male 
neonate CH was diagnosed by NS, while his younger 
sister was diagnosed with hypothyroidism and goiter at 
5  years old. These cases, along with ours, suggest that 
the same genotype may be associated with phenotypic 
heterogeneity.

SLCA26A7 null mice exhibit goitrous hypothyroidism 
but differ from humans in radioiodine studies, show-
ing reduced tracer uptake but normal discharge after 
perchlorate administration [8]. Cangul et al. [8] demon-
strated that 30  µg iodide/day supplementation partially 
reversed hypothyroidism in Slc26a7-null mice. How-
ever, the effect of iodine supplementation in patients 
with SLC26A7 homozygous mutations remains unex-
plored. Our trial of 1 mg/die of iodine supplementation 
for 2  weeks after LT4 suspension did not correct hypo-
thyroidism, but it was interrupted due to concomitant 
myopericarditis.

Given that Slc26a7-null mice also exhibit distal renal 
tubular acidosis [8], we investigated acid–base status and 
urinary electrolytes in our patient, finding normal renal 
function.

In conclusion, while from literature all CH patients 
with homozygous mutations of SLC26A7 gene were 
detected by neonatal screening or within the first years 
of life, we described the first case of CH due to a homozy-
gous mutation of SLC26A7 diagnosed during late adoles-
cence. Although the NS test was unavailable, the absence 
of intellectual retardation and the normal growth sug-
gested a late onset of hypothyroidism. We suppose that 
other environmental factors and genetic polymorphisms 
of other genes involved in thyroid hormone synthesis 
may influence iodine transport into the lumen of the thy-
roid follicles and have a role in the timing and severity of 
hypothyroidism. No overt renal acid–base abnormalities 
in the healthy state were observed, but a role of the muta-
tion when homeostasis is perturbed is possible.
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