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Abstract
Background Carboxylesterase 1(CES1) is expressed mainly in the liver and adipose tissue and is highly hypothesized 
to play an essential role in metabolism. Our study aimed to investigate the association between CES1 and metabolic 
syndrome (MetS) and metabolic dysfunction associated steatotic liver disease (MASLD) in children with obesity in 
China.

Methods This study included 72 children with obesity aged 6-13years (including 25(35%) diagnosed as MetS and 
36(50%) diagnosed as MASLD). All subjects were measured in anthropometry, serum level of biochemical parameters 
related to obesity, circumstance levels of insulin-like growth factor1, adipokines (adiponectin, leptin and growth 
differentiation factor 15) and CES1.

Results Higher serum CES1 level were found in the MetS group (P = 0.004) and the MASLD group (P < 0.001) 
of children with obesity. Serum CES1 levels were positively correlated with alanine aminotransferase, aspartate 
aminotransferase, triglyceride, cholesterol, low-density lipoprotein cholesterol, GDF15, Leptin and negatively 
correlated with high-density lipoprotein cholesterol, adiponectin and IGF1. We also found a multivariable logistic 
regression analysis of MASLD and MetS predicted by CES1 significantly (MASLD P < 0.01, MetS P < 0.05). The 
combination of CES1, sex, age and BMI Z-score showed a sensitivity and specificity of 92.7% for the identification of 
MASLD and 78.6% for the identification of MetS. The cutoff for CES1 of MASLD is 56.30 ng/mL and of MetS is 97.79 ng/
mL.

Conclusions CES1 is associated with an increasing risk of MetS and MASLD and can be established as a biomarker for 
metabolic syndrome and MASLD of children with obesity.
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Backgound
Worldwide, the prevalence of childhood obesity is 
increasing year by year [1]. Childhood obesity is associ-
ated with many metabolic disorders, including metabolic 
dysfunction associated steatotic liver disease (MASLD) 
and metabolic syndrome (MetS) [2]. MASLD is defined 
as excess lipid infiltration of the hepatic parenchymal 
cells with one cardiometabolic risk factor (CMRF) and 
without other pathogenic factors [3, 4]. MetS is a group 
of clinical symptoms characterized by abdominal obe-
sity, hyperglycemia, hypertension and dyslipidemia [5]. 
Both MASLD and MetS can have adverse consequences 
without early intervention, so it is necessary for chil-
dren with obesity to identify risk factors as early as pos-
sible [6]. However, the exact diagnostic criteria for MetS 
in childhood and the exact therapeutic indications and 
strategies for pediatric MASLD are not variable. Thus, it 
is extremely important to define new biomarkers for the 
diagnosis of MetS and MASLD in children with obesity.

Carboxylesterase 1 (CES1) is a crucial serine hydro-
lase located mainly in parenchymal hepatic cells and 
adipocytes [7, 8]. CES1 works primarily on hydrolyzing 
endogenous lipids, including cholesterol esters, triglyc-
erides, and promotes lipid storage [9]. Previous studies 
have demonstrated that CES1 gene expressions increased 
in adipose tissues of obese animals and during differen-
tiation of adipocytes [8, 10]. CES1 could also be found 
in the medium supernatant of human brown adipocytes 
and increased after norepinephrine stimulation [11]. 
CES1 also participated in obesity-induced hepatic steato-
sis, inactivation, and CES1 deficiency in obesity animal 
models induced by high-fat diet could improve the devel-
opment of liver steatosis and steatohepatitis [12]. Numer-
ous studies in human adults have demonstrated that 
increased gene expression of CES1could be observed in 
MASLD, NASH patients and correlated with obesity and 
related cardiovascular risk factors [13]. However, studies 
focus on CES1 levels in the serum of objects with obesity 
are rare and it is unknown how CES1 levels changed in 
children with obesity.

In this study, we focus on investigating the association 
between serum CES1 level and MASLD, MetS, in chil-
dren and adolescents in China with obesity. We found 
that levels of CES1 increased in both the MASLD and 
MetS group. Furthermore, we identified that the serum 
CES1 level had a diagnosis value for MASLD and MetS in 
children with obesity.

Methods
Subjects
A total of 72 children (44 boys, 28 girls) with obesity 
aged 6–13 years were recruited from the Department of 
Pediatrics at Tongji Hospital from January 2023 to Sep-
tember 2023. Parents of all children signed an informed 
consent before inclusion, and all procedures of this study 
were approved by the Tongji Hospital Ethics Commit-
tee. The criterion for the diagnosis of obesity in children 
and adolescents was using criteria of the World Health 
Organization [14]. The exclusion criteria were: being 
diagnosed with metabolic disease of heredity, taking 
drugs that could influence lipid metabolism and glucose 
metabolism, leading to liver function damage in the last 
6 months, having acute infection, and having a history of 
alcohol drinking.

Anthropometric assessments
All subjects complemented the anthropometric assess-
ments including height (cm), body weight (kg) and waist 
circumference (WC) (cm) by experienced physicians 
using standard procedures [15]. Body mass index (BMI) 
was calculated by weight (kg) divided by the square of 
one’s height (cm). BMI Z-score: Z = [(BMI/M) L − 1]/ 
(L × S) [the median (M), coefficient of variation (S) and 
skewness (L)] according to Chinese criteria [16]. The 
waist -to- height ratio was calculated by dividing waist 
circumference (cm) by height (cm). Blood pressure 
was measured after subjects had rested for 5  min and 
three times for each subject using the same mercury 
sphygmomanometer.

Biochemical evaluations and ELISAs
Blood samples were collected after fasting for 12  h and 
centrifuged at 3000  g for 15  min. Serum samples were 
stored at -80℃ for further biochemical and protein 
detection. Serum levels of alanine aminotransferase 
(ALT), aspartate aminotransferase (AST), total triglycer-
ide (TG), total cholesterol (TC), high-density lipoprotein 
cholesterol (HDL-C), low-density lipoprotein choles-
terol (LDL-C), fasting blood glucose (FBG), fasting blood 
insulin (FBI) were measured by automatic biochemical 
analyzer. Homeostasis model assessment of insulin resis-
tance (HOMA-IR) was done using the formula as follows: 
FBG (mmol/L) × FBI (mU/L)/22.5. Serum levels of adipo-
nectin, leptin, GDF15, IGF-1, CES1 were measured using 
enzyme-linked immunosorbent assay ELESA kits (Boster 
Biological, Pleasanton, CA) following the manufacturer’s 
protocol.
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Recruitment
Hepatic steatosis was checked by abdominal ultraso-
nography and MASLD was defined by standard crite-
ria [3, 4]. MetS was defined using the criteria proposed 
by the International Diabetes Institute [17] for chil-
dren age 10 to 16 years that consisted of central obesity 
(waist circumference ≥ 90th percentile of children of the 
same age and sex) and having any two of four risk fac-
tors: hyperglycemia, hypertension, low HDL-C and high 
triglycerides. For children between 6 and 10 years, the 
cut points for cardiovascular disease (CVD) risk factors 
were used to replace diagnosis of MetS which was com-
posed of obesity (BMI ≥ 95th percentile or waist circum-
ference ≥ 95th percentile) and having two of three risk 
factors: hypertension (blood pressure ≥ 95th percentile), 
dyslipidemia (HDL-C < 1.03 mmol/L, non-HDL-C ≥ 3.76 
mmol/L, TG ≥ 1.47 mmol/L), hyperglycemia (FBG ≥ 5.6 
mmol/L) [18].

Statistical analysis
Statistics were performed using SPSS 23 (SPSS, Chi-
cago, Illinois) and a P value < 0.05 was considered signifi-
cant. Shapiro-wilk tests were used to test the normality 
of the data distribution. Data for variables confirming a 
normal distribution were presented as mean ± standard 
deviation and Student’s t test was used for comparisons 
between two groups. Data for variable with a Skewed dis-
tribution were presented as median (interquartile range) 
and Mann–Whitney U tests were used for comparisons 
between two groups. Pearson’s correlations were per-
formed to evaluate the association of serum CES1 lev-
els with metabolic risk factor levels, adiponectin, leptin, 
GDF15, and IGF-1 levels in serum after the data for vari-
ables not confirming a normal distribution performed a 
logarithmic transformation. Partial correlation coeffi-
cients were used for data adjusted for sex and age.

Binary logistic regression was performed to identify 
variables independently associated with serum CES1 
levels and confounders were chosen by 3 important cri-
teria [19]. A binary logistic regression model was used to 
identify the value of serum carboxylesterase 1 levels on 
recognizing non-alcoholic fatty liver disease and meta-
bolic syndrome. Receiver operating characteristic (ROC) 
curves were performed to determine the risk of MASLD 
and MetS according to serum levels of CES1.

Results
Clinical characteristics of subjects with obesity
A total of 72 children with obesity (44 boys and 28 girls) 
are included. Among these children, 50% (36/72) had 
MASLD and 34.7% (25/72) had metabolic syndrome 
(MetS). The clinical measurement and biochemical 
detection characteristics of the study objects are pre-
sented in Table 1. Boys were more likely to have MASLD 

(P = 0.004) and older children were more likely to have 
MetS (P = 0.036). As expected, the weight, waist cir-
cumference, and BMI values were significantly higher in 
both the MASLD group and the MetS group. Serum lev-
els of ALT, AST, TG, LDL-C, fasting insulin, HOMA-IR 
were significantly higher and HDL-C were lower in both 
groups. However, TC levels and BMI Z-score were only 
significantly higher in children with MASLD. The circu-
lating levels of GDF15 was markedly higher in subjects 
with MASLD (P < 0.001), MetS (P < 0.001). Interestingly, 
the serum level of CES1 was significantly higher in the 
MASLD group (P < 0.001) and the MetS group (P = 0.004) 
(Fig.  1). However, serum leptin levels were only signifi-
cantly higher in patients with MASLD and serum adipo-
nectin levels were lower in both the MASLD and MetS 
group, but there were no statistic differences.

Increased serum CES1 levels were associated with 
metabolic risk factors and adiposity in children with 
obesity
To analyze the relationship between serum CES1 and 
obesity-related factors, Pearson’s correlations were per-
formed. As shown in Extend Table 1, the age of subjects 
with obesity was positively associated with serum CES1 
levels (P = 0.024). In terms of anthropometric indices, 
such as WHtR, BMI Z-score were not associated with 
serum CES1 levels and weight (P = 0.028), WC (P = 0.026), 
BMI (P = 0.041) was positively associated with serum 
CES1 levels (Extend Table  1). Serum CES1 levels were 
positively correlated with ALT, AST, TG, TC, LDL-C, 
FBI, HOMA-IR and negatively correlated with HDL-C 
(Fig. 2). Surprisingly, circumstance CES1 levels were pos-
itively associated with leptin, GDF15 and negatively asso-
ciated with adiponectin, IGF1 (Fig. 3). After adjusted for 
age and sex, most correlations remained (P < 0.05) beside 
weight, WC, BMI, leptin (P > 0.05).

Increased circumstance CES1 levels were related to 
increased risk of MASLD and MetS
To conform the relationship between serum CES1 levels 
and MASLD or MetS, binary logistic regression analy-
ses (n = 72; Table  2) were further made to identify the 
risks of the diseases belong and correctly adjusted by 
confounders such as sex, age, weight, waist circumfer-
ence and BMI (Table  2) [19]. The risk of MASLD was 
increased 1.95 times per 1 SD increase in serum CES1 
levels (log transformed) (OR: 2.95; 95% CI, 1.598–5.443, 
P = 0.001). Increased serum CES1 was significantly asso-
ciated with an increased risk of MetS (OR: 2.255; 95% 
CI, 1.277–3.981, P = 0.005). After adjustment for con-
founders, higher serum levels of CES1 were still indepen-
dently related to higher MASLD risk (OR:3.561; 95% CI, 
1.598–7.938, P = 0.002) and MetS risk (OR: 2.040; 95% CI, 
1.103–3.773, P = 0.023).
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Circulating concentrations of CES1 as a predictor for 
MASLD and MetS in children with obesity
Following, we used the ROC curve to assess the capac-
ity of serum CES1 levels used to discriminate children 
with or without MASLD or MetS. The AUC of circu-
lation CES1 levels in above-mentioned children with 
MASLD shown in Fig.  4 was 75% (ROC-AUC = 0.750, 
95% CI, 0.638-0 0.862, P < 0.001); the optimal cutoff point 
of serum CES1 levels for diagnosing MASLD was 56.30 
ng/ml (specificity = 0.806, sensitivity = 0.611; Youden’s 
index = 0.417). The AUC of serum CES1 levels in chil-
dren diagnosed with MetS was 70.7% (ROC-AUC = 0.707, 
95% CI, 0.581–0.833, P = 0.004); the optimal cutoff point 
of serum CES1 levels for diagnosis of MetS was 97.79 
ng/ml (specificity = 0.872, sensitivity = 0.520, Youden’s 
index = 0.392).

After a combination of CES1, BMI Z-score, age and sex 
for the logistic regression prediction model, the percent-
age of correct predictions for MASLD was 88.9% (ROC-
AUC = 0.927, 95% CI, 0.862–0.991, P < 0.001) and for 
MetS was72.6% (ROC-AUC = 0.786, 95% CI, 0.673–0.898, 
P < 0.001).

Table 1 Characteristics of obesity subjects according to MASLD and MetS
Variables All MASLD Metabolic syndrome

No Yes P-value No Yes P-value
N (boys/girls) 72(44/28) 36(16/20) 36(28/8) 0.004* 47(28/19) 25(16/9) 0.7
Age (years)2 11(9,12) 10(9,11) 10(9,11) 0.5 10(9,11) 12(9.5,13) 0.036*
Weight (kg) 2 65 (53, 76) 57 (48, 68) 70 (63, 88) < 0.001* 61 (51, 70) 75 (64, 90) 0.002*
WC (cm) 2 89 (83, 97) 84 (77, 88) 96 (89, 108) < 0.001* 86 (81, 94) 96 (89, 105) 0.003*
WHtR 1 0.60 ± 0.7 0.56 ± 0.05 0.65 ± 0.07 < 0.001* 0.59 ± 0.07 0.63 ± 0.08 0.057
SBP (mmHg) 1 110.75 ± 13.19 106.67 ± 12.32 114.83 ± 12.91 0.008* 106.27 ± 11.40 119.16 ± 12.35 < 0.001*
DBP (mmHg) 1 71.51 ± 9.27 67.94 ± 8.02 75.08 ± 9.15 0.001* 69.26 ± 9.10 75.76 ± 8.16 0.004*
BMI (kg/m2) 1 28.69 ± 5.28 25.73 ± 4.03 31.66 ± 4.72 < 0.001* 27.48 ± 5.06 31.00 ± 5.00 0.006*
BMI Z-score 1 3.07 ± 0.72 2.80 ± 0.63 3.34 ± 0.71 0.001* 2.97 ± 0.70 3.25 ± 0.73 1.12
ALT (U/L) 2 21 (14, 38) 14 (11, 20) 36 (21, 68) < 0.001* 18 (12, 28) 31 (20, 107) < 0.001*
AST (U/L) 2 22 (20, 34) 20 (18, 23) 26 (21, 40) < 0.001* 21 (20, 25) 30 (20, 44) 0.03*
TG (mmol/L) 2 1.05 (0.80, 1.54) 0.91 (0.67, 1.19) 1.25 (0.99, 1.64) 0.004* 0.94 (0.69, 1.14) 1.54 (1.18, 1.72) < 0.001*
TC (mmol/L) 1 3.88 ± 0.67 3.70 ± 0.60 4.04 ± 0.71 0.03* 3.79 ± 0.61 4.03 ± 0.76 0.144
HDL-C (mmol/L) 1 1.13 ± 0.27 1.22 ± 0.26 1.04 ± 0.24 0.003* 1.20 ± 0.27 1.00 ± 0.18 < 0.001*
LDL-C (mmol/L) 1 2.49 ± 0.64 2.24 ± 0.54 2.74 ± 0.64 0.001* 2.36 ± 0.55 2.73 ± 0.73 0.016*
FBG (mmol/L) 2 4.86 (4.58, 5.11) 4.80 (4.62, 5.05) 4.89 (4.57, 5.15) 0.7 4.75 (4.60, 5.12) 4.91 (4.58, 5.10) 0.7
FBI (mU/L) 2 20 (12, 26) 15 (9, 21) 24 (14, 33) < 0.001* 14 (10, 22) 26 (17, 38) < 0.001*
HOMA-IR 2 4.46 (2.55, 6.15) 3.50 (1.84, 4.60) 5.30 (2.96, 7.25) < 0.001* 3.03 (2.12, 4.96) 6.09 (4.71, 7.67) < 0.001*
Adiponectin (ug/mL) 2 11 (7, 14) 12 (7, 16) 9 (7, 13) 0.11 12 (7, 15) 9 (6, 13) 0.089
Leptin (ng/mL) 2 24 (16, 35) 18 (11, 28) 28 (20, 45) 0.003* 22 (12, 33) 25 (19, 38) 0.4
GDF15 (ng/mL) 2 209 (169, 267) 175 (156, 218) 240 (201, 315) < 0.001* 190 (161, 226) 278 (204, 338) < 0.001*
IGF-1 (ng/mL) 2 212 (138, 294) 255 (167, 314) 178 (121, 265) 0.016* 222 (148, 298) 195 (124, 290) 0.4
CES1 (ng/mL) 2 39 (27, 93) 34 (21, 51) 84 (37, 129) < 0.001* 35 (23, 76) 93 (37, 130) 0.004*
1Data are presented as mean ± standard deviation. Student’s t test was used for the comparison. *P < 0.05
2Data are presented as median (interquartile range). Mann–Whitney U tests were used for the comparisons. *P < 0.05

Fig. 1 Plasma levels of CES1 comparing non-MASLD to MASLD individu-
als and non-MetS to MetS individuals. Statistical assessment was consid-
ered statistically significant at *P < 0.05, **P < 0.01
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Discussion
In this study, we first presented a higher serum level of 
CES1 in both the MASLD and MetS groups of children 
with obesity and the serum CES1 levels were significantly 
associated with lipid metabolic disturbance, abnormal 
glucose metabolism and circulating adipokines. Further-
more, elevated serum CES1 levels were independently 
associated with higher risk of MASLD and MetS in chil-
dren with obesity in China. These findings indicated 
that CES1 as a new biomarker of metabolic disorder in 

children with obesity may play a crucial role in the pro-
gression of MASLD and MetS.

Obesity is caused by excessive energy intake and large 
amounts of lipids deposited in fat tissue, leading to 
hypertrophy of adipocytes and inflammation of adipose 
tissue [20]. Adipokines are a group of proteins secreted 
by adipocytes that can be dysregulated during obe-
sity and contribute to obesity-related disorders such as 
MASLD and MetS [21]. Therefore, the study of specific 
adipokines in patients with obesity of their secretion 

Fig. 2 Correlation analysis between CES1 and metabolic risk factors. (A) ALT, (B) AST, (C) TG, (D) TC, (E) H-DLC, (F) L-DLC, (G) FBI, (H) HOMA-IR. Statistical 
assessment was 2-sided and considered statistically significant at *P < 0.05, **P < 0.01, ***P < 0.001
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levels and mechanism pathways is helpful for the treat-
ment or prevention of the development of metabolic 
disorders.

CES1 is a carboxylesterase that belongs to the α/β-
hydrolase fold family of proteins and is expressed mainly 
in the liver and also express in adipose tissue. CES1 has 
hydrolase activity of triglyceride (TG), cholesteryl ester 
(CE) and also participates in the metabolism of lipid 
droplets (LDs) which is predicted to play a role in energy 
homeostasis [22–24]. CES1 expression was increased 
during the differentiation of adipocytes and is higher 
in adipose tissue of patients with obesity [8, 25]. Ces1 
deficiency in mice leads to a decrease in blood triglyc-
eride levels, an improvement glucose metabolism and 
increased energy expenditure [26, 27]. Treatment of Ces1 
inhibitors to obesity mice induced by a high fat diet and 
db/db mice improved multiple features of metabolic dis-
orders, including decreased weight gain, improved lipid 
and glucose metabolisms and improved liver steatosis 

[11]. All of the studies presented above illustrated that an 
increased level of CES1 may have harmful effect on the 
development of obesity-related disorders and inhibiting 
the activity of CES1 may improve metabolic disorders 
of obesity [28]. In our study, we found that serum CES1 
levels were significantly higher in children with obesity 
diagnosed as MASLD or MetS which was consistent with 
previous studies [29].

It is well known that obesity can lead to excess lipid 
accumulation in liver and adipose tissues that is asso-
ciated with metabolic risk factors such as waist cir-
cumstances, BMI, insulin resistance, hyperlipidemia, 
and abnormal liver function [20, 30]. In this study, we 
indicated that obesity indices (weight, WC, BMI) and 
metabolic risk factors (ALT, AST, TG, TC, LDL-C, FBI, 
HOMA-IR values) were higher in children with obesity 
with MASLD or MetS than without. Moreover, GDF15 
which been positively associated with NAFLD-NASH 
progression, was increased in children with obesity of 

Table 2 Effect of serum carboxylesterase 1 levels on metabolic dysfunction–associated steatotic liver disease and metabolic 
syndrome

MASLD Metabolic syndrome
β(SE) OR ( 95%CI ) P β(SE) OR ( 95%CI ) P

Model11 1.082(0.313) 2.950(1.598,5.443) 0.001 0.813(0.290) 2.255(1.277,3.981) 0.005
Model22 1.344(0.379) 3.834(1.826,8.053) < 0.001 0.707(0.298) 2.028(1.131,3.637) 0.018
Model33 1.270(0.409) 3.561(1.598,7.938) 0.002 0.713(0.314) 2.040(1.103,3.773) 0.023
1Model1, unadjusted
2Model2, adjusted for age and sex
3Model3, adjusted for age, sex, body mass index, waist circumference, weight

Fig. 3 Correlation analysis between CES1 and obesity-related secreted proteins. (A) Adiponectin, (B) Leptin, (C) GDF15, (D) IGF-1. Spearman correlation 
coefficient was used. Statistical assessment was 2-sided and considered statistically significant at *P < 0.05, **P < 0.01
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MASLD or MetS and leptin increased only in subjects of 
MASLD but not MetS [31].

The most interesting finding in this study was that 
serum CES1 levels were significantly associated with lipid 
metabolism (ALT, AST, TG, TC, LDL-C), glucose metab-
olism (FBI, HOMA-IR) and obesity-related secreted pro-
teins (adiponectin, leptin, GDF15, IGF-1). As previously 
reported, CES1 could participate in triglyceride, cho-
lesterol ester hydrolysis, and the lipid drop formation in 
liver parenchymal cells and adipocytes [9]. Overexpres-
sion of Ces1 in mice could increase liver lipolytic activity 
leading to higher TG level in serum [32]. Insulin resis-
tance played a crucial role in development of MASLD, 
MetS and other metabolic disorders, and HOMA-IR is 
the most common method used to assess insulin resis-
tance [33]. In studies in adult individuals, the serum 
leptin level is positively associated with metabolic indi-
ces including increased weight, insulin resistance, and 
inflammation [34]. Adiponectin is predicted as a possible 
antidiabetic adipokine which is considered as an impor-
tant correlative marker of the sensitivity to systemic insu-
lin resistance and the action of adipocytes [35]. GDF15 is 
a newly secreted adipokine by both liver and adipocytes, 
and could be a prognostic biomarker to predict fibrosis 

in NAFLD [36]. IGF-1 was secreted primarily by the liver 
and was decreased in patients with NAFLD, which could 
play a protective role in the liver fibrosis process [37]. 
According to the above, we believed that serum CES1 in 
children with obesity was mainly secreted from liver and 
adipose tissues and may play an irreplaceable role in the 
progression of insulin resistance and NAFLD fibrosis.

To further explore the association between serum 
CES1 level and the risk of MASLD and MetS in children 
with obesity, a binary logistic regression model was used 
to analyze including sex, age, and obesity indices (BMI, 
weight, WC). The risk of MASLD was increased 1.95 
times and the risk of MetS was increased 1.25 times per 1 
SD increase in serum CES1 levels. Furthermore, the ROC 
curve was conducted to assess the capacity of serum 
CES1 levels used to discriminate children with or with-
out MASLD or MetS. And the cut-off point for CES1 of 
MASLD is 56.30 ng/ml and of MetS is 97.79 ng/ml.

Although our study found a new biomarker for both 
MASLD and MetS in children with obesity, it still has few 
limitations. First, the study used only children with obe-
sity without normal individuals, which was insufficient 
to assess serum CES1 levels between the obesity group 
and normal individual groups. Second, it is difficult to 

Fig. 4 Receiver operating characteristic (ROC) curve for metabolic dysfunction associated steatotic liver disease (MASLD) (A) and metabolism syndrome 
(MetS) (B) according to serum CES1 levels. Receiver operating characteristic (ROC) analyses of logistic regression prediction models after combination of 
CES1, age, sex and BMI Z-score for MASLD (C) and MetS (D)
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diagnose MetS in children earlier than 10 years old, 
instead, we used CVD risk factors that may remain con-
troversial. Third, we did not distinguish the different 
stage of MASLD by the limitation of ultrasound diag-
nosis. More studies are needed to test CES1 level in the 
development of MASLD.

Conclusion
In summary, this study indicated that serum CES1 lev-
els were increased in children with obesity diagnosed 
as MASLD and MetS. This study also suggested that 
serum levels of CES1 had an association with the risk of 
MASLD, MetS and could be used as a biomarker for pre-
dictive value.
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