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Abstract
Background  Echocardiography-based ultrasomics analysis aids Kawasaki disease (KD) diagnosis but its role in 
predicting coronary artery lesions (CALs) progression remains unknown. We aimed to develop and validate a 
predictive model combining  echocardiogram-based ultrasomics with clinical parameters for CALs progression in KD.

Methods  Total 371 KD patients with CALs at baseline were enrolled from a retrospective cohort (cohort 1, n = 316) 
and a prospective cohort (cohort 2, n = 55). CALs progression was defined by increased Z scores in any coronary 
artery branch at the 1-month follow-up. Patients in cohort 1 were split randomly into training and validation set 1 at 
the ratio of 6:4, while cohort 2 comprised validation set 2. Clinical parameters and ultrasomics features at baseline 
were analyzed and selected for models construction. Model performance was evaluated by area under the receiver 
operating characteristic curve (AUROC), area under the precision-recall curve (AUPRC) and decision curve analysis 
(DCA) in the training and two validation sets.

Results  At the 1-month follow-ups, 65 patients presented with CALs progression. Three clinical parameters and six 
ultrasomics features were selected to construct the model. The clinical-ultrasomics model exhibited a good predictive 
capability in the training, validation set 1 and set 2, achieving AUROCs of 0.83 (95% CI, 0.75–0.90), 0.84 (95% CI, 0.74–
0.94), and 0.73 (95% CI, 0.40–0.86), respectively. Moreover, the AUPRC values and DCA of three model demonstrated 
that the clinical-ultrasomics model consistently outperformed both the clinical model and the ultrasomics model 
across all three sets, including the training set and the two validation sets.

Conclusions  Our study demonstrated the effective predictive capacity of a prediction model combining 
echocardiogram-based ultrasomics features and clinical parameters in predicting CALs progression in KD.

Key message
Early identification of patients at risk of progression of coronary artery lesions remains vital for improving the 
prognosis of patients with Kawasaki disease. Whether ultrasomics help predict the progression of coronary artery 
lesions in Kawasaki disease remains unclear. The present study included 371 patients with Kawasaki disease and 
analyzed 1484 echocardiographic images. An integrated model combining echocardiogram-based ultrasomics 
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Introduction
Kawasaki disease (KD) is an acute vasculitis of childhood 
that mainly affects children under 5 years old, and it is 
the primary cause of acquired heart disease in children of 
developed countries [1]. Globally, the incidence of KD has 
substantially increased over the past decades [2], which 
was approximately 107.3 per 100,000 children aged < 5 
years in China [3]. Coronary artery lesions (CALs) are 
the predominant adverse complications of KD, which 
consist of coronary artery dilation (CAD) and coronary 
artery aneurysms (CAA). Despite the widespread adop-
tion of standard treatment, approximately 9.0-15.9% of 
patients with KD may develop CALs [3–5]. As research 
on KD progresses, the evolving research focus has shifted 
from merely assessing CALs’ occurrence to monitoring 
their changes in the course of disease [6–8].

Several studies reported that 77.4–82.0% CALs normal-
ize in dimensions within 2 years after KD onset [9, 10], 
roughly 24% of patients with initially diagnosed CALs 
may persist or progress in subsequent evaluations [11]. 
Notably, progressive CALs correlate with adverse late 
coronary artery outcomes [12], warranting heightened 
attention for KD patients experiencing CALs progres-
sion. Since primary adjunctive treatment can ameliorate 
the coronary artery outcomes of KD patients with CALs 
[13, 14], early identification of patients at risk of CALs 
progression remains vital for improving their prognosis.

Utilizing intricate computer algorithms to extract 
extensive data from images, ultrasomics can analyze 
numerous quantitative image features that are challeng-
ing to discern with the naked eye [15, 16]. Increasing 
studies have indicated the potential of radiomics in diag-
nosing and predicting cardiovascular diseases in multiple 
imaging methods, such as coronary computed tomog-
raphy angiography (CCTA) [17, 18],cardiac magnetic 
resonance (CMR) [19, 20], and echocardiographic exami-
nations [21, 22]. As stated by the American Heart Asso-
ciation (AHA), transthoracic echocardiography (TTE) 
has been recommended as the primary method for coro-
nary artery assessment in KD patients [1]. Recently, two 
researches have applied deep learning (DL) algorithms to 
detect CALs on echocardiographic images, aiding in KD 
diagnosis [23, 24]. However, studies employing echocar-
diographic images via ultrasomics to identify KD patients 
at risk of CALs progression have not been reported. 
Numerous previous studies have explored risk factors for 
the persistence or progression of CALs based on medical 
records [6, 9, 25, 26], identifying their associations with 
coronary artery imaging findings such as CAA size at 

diagnosis and the number of involved coronary arteries 
[9, 26]. However, there remains a relatively unexplored 
domain in comprehensively investigating coronary artery 
imaging features through ultrasomics.

Therefore, we conducted this study to develop and 
validate a predictive model that combined clinical 
parameters and echocardiographic ultrasomics features, 
expecting to identify KD patients at-risk in time and 
improve the coronary artery outcomes of these children.

Methods
Study patients and design
This observational study was conducted at the Depart-
ment of Cardiology, Children’s Hospital Capital Insti-
tute of Pediatrics in Beijing, China. Ninety-six patients 
were excluded due to various reasons such as incomplete 
medical records and poor quality of echocardiograpghic 
images, leaving 371 patients for subsequent analysis. The 
present study consisted of a retrospective cohort (cohort 
1, n = 316) and a prospective cohort (cohort 2, n = 55). 
Cohort 1 included KD patients who hospitalized in our 
center between April 2018 and May 2022 to train and 
validate of predictive models. Cohort 2 prospectively 
recruited eligible patients from June 2022 to June 2023 to 
assess the generalizability of the model.

The inclusion criteria were as follows: (i) confirmed 
diagnosis of KD; (ii) hospitalized children; (iii) detected 
with CALs on any of the coronary arteries at the time 
of KD diagnosis or before intravenous immunoglobulin 
(IVIG) treatment. The exclusion criteria were as follows: 
(i) recurrent KD; (ii) no IVIG treatment during hospi-
talization; (iii) no available follow-up echocardiographic 
evaluation at 1-month after KD onset; (iv) coexisting 
congenital heart diseases; (v) subsequent diagnosis of 
other diseases, such as Takayasu arteritis. (vi) the delin-
eation of regions-of-interest (ROIs) was restricted by the 
poor quality of the images.

The study was reviewed and approved by the Insti-
tutional Research Board of Children’s Hospital Capi-
tal Institute (SHERLL2023048). Informed consent was 
obtained from at least one parent or guardian for each 
patient.

Data collection, echocardicgraphic coronary artery 
evaluation
Each patient’ demographic information, clinical charac-
teristics, responsiveness to IVIG treatment, laboratory 
indicators prior to the treatment of IVIG, and baseline 
echocardiographic images (the echocardiogram obtained 

features and clinical parameters was established and validated, demonstrating satisfactory performance in 
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at the time of diagnosis or before IVIG treatment) were 
collected. Besides the diagnosis and treatment of KD, the 
definition of IVIG resistance, definition of complete and 
incomplete KD, and the frequency of echocardiographic 
evaluation were all based on the criteria of AHA (2017) 
[1].

The coronary artery findings were obtained by expe-
rienced ultra-sonographers with the Philips ie33 or 7c 
system. The internal dimensions of left main coronary 
artery (LMCA), left anterior descending artery (LAD), 
left circumflex artery (LCX), and 3 segments (proximal, 
middle, and distal) of right coronary artery (RCA) were 
measured and recorded by echocardiography and con-
verted to Z scores according to the criteria of Kobayashi 
Z-score adjusted for body surface area [27]. The maxi-
mum Z score (Zmax) was defined as the largest Z score 
of the four coronary artery branches (LMCA, LAD, LCX, 
or RCA) on echocardiography.

Given the significant association between the sever-
ity of CALs one month after disease onset and late 
coronary artery outcomes in KD patients [28, 29], the 
present study compared the Z scores of coronary arter-
ies at the 1-month follow-up with their baseline scores. 
Patients were categorized into 2 groups based on changes 
in Z scores of coronary arteries between baseline and 
1-month follow-up: (1) CALs-progressed: any of four 
coronary artery branches presented an increased Z score 
at the 1-month follow-up; (2) CALs-improved: no coro-
nary arteries presented increased Z scores, and at least 
one coronary showed a reduced Z score at the 1-month 
follow-up.

Image screening, ROIs segmentation and feature 
extraction
Considering the lowest frequency of occurrence and poor 
clarity of images regarded the sites of CALs located in 
the left circumflex and distal RCA, the images of LMCA, 
LAD, the proximal segment of RCA (RCAp), the middle 
segment of RCA (RCAm) were selected to subsequent 
analysis. All echocardiographic images in the DICOM 
format were anonymized to protect the privacy of the 
included patients.

Then the ROIs were manually segmented by an ultra-
sonographer (Shuai, Yang) and confirmed by another 
experienced ultrasonographer who had over 15 years’ 
experience (Ai-Mei, CAO) in pediatric cardiology, using 
ITK-SNAP (version 3.8, www.itksnap.org) software. The 
ROIs included the vascular walls and lumen diameter 
of the typical sites of CALs on the images. Both ultra-
sonologists were blinded to the diagnosis results during 
the process of cardiac evaluation and ROIs segmentation. 
Ultrasomics features were extracted in Python (version 
3.8.8) using Pyradiomics (version 2.2.0), which complies 
with the Imaging Biomarker Standardization Initiative 

(IBSI) guidelines. Intraclass correlation coefficient (ICC) 
was calculated to assess the reproducibility of feature 
extraction,   of which an ICC value lower than 0.75 was 
removed.

Selection of ultrasomics features
Feature selection was conducted based on the train-
ing cohort. All extracted ultrasomics features from each 
patient were normalized using the Z-score method. 
Hierarchical analysis was performed based on Pearson’s 
correlation analysis, and the redundancy features with 
correlation coefficients > 0.90 were eliminated. Subse-
quently, an analysis of variance (ANOVA) F-test statistic 
was used to select the top 30% features ranked by F-value 
(each feature has a individual F-value related to target 
events).

Nine machine learning algorithms were trained, 
including random forest (RF), support vector machine 
(SVM), decision tree, K-nearest neighbors (KNN), gra-
dient boosting machine (GBM), light gradient boost-
ing machine (LightGBM), extreme gradient boosting 
machine (XGBoost), multi-Layer perceptron (mLP), 
bernoulli naive Bayes (bNB). The performance of each 
algorithm was evaluated from two aspects, including 
accuracy (ACC) and the area under the receiver operat-
ing characteristic curve (AUROC). The optimal algo-
rithm was selected after comprehensive evaluation of 
above two aspects.

To narrow the range of contributing factors, the impor-
tance of each factor was calculated using the SHAP 
(SHapley Additive exPlanation) tool. After ordering the 
importance of all variables from the highest to the low-
est, the prediction performance of an increasing num-
ber of top factors was appraised by ACC, precision, and 
AUROC, upon which the minimal number of important 
variables was determined.

Selection of clinical parameters
The demographic and clinical characteristics, the respon-
siveness to IVIG treatment, and laboratory indicators 
prior to the treatment of IVIG of enrolled patients in 
the training set were analyzed to select clinical param-
eters for CALs progression. The bidirectional stepwise 
approach was adopted, and those significant variables 
(P < 0.1) were selected to subsequent model construction.

Statistical analysis
The clinical model was constructed by the clinical param-
eters selected by bidirectional stepwise approach using 
logistic regression analysis. The ultrasomics model was 
established with the ultrasomic features selected in the 
way as mentioned above. Finally, a clinical-ultrasomics 
predictive model was developed by integrating the 
selected clinical parameters and the ultrasomic features 
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using logistic regression. Moreover, the performance of 
the three models was assessed by AUROC, area under 
the precision-recall curve (AUPRC) and decision curve 
analysis (DCA) in the training and two validation sets.

Results were expressed as numbers and percentages 
for categorical variables, and median (with inter-quartile 
range) or mean (with 95% confidence interval) for quan-
titative ones. Comparisons were performed using the 
Fisher’s exact test for categorical variables and the Mann-
Whitney U test for quantitative variables. A two-sided 
p-value < 0.05 was considered statistically significant. All 
data were collected anonymously.

The statistical handling was done by the community 
PyCharm (edition 2.2.0) on the Windows 10 system with 
the Python software (version 3.8.8). Missing data were 
supplemented according to the multiple imputation pro-
cedure, which was implemented by the MICE package in 
the R programming environment (Version 4.0).

Results
Demographic and clinical characteristics of enrolled 
patients
As the flowchart of patient selection process shown in 
Fig.  1, a total of 371 patients were eventually enrolled 
based on the inclusion and exclusion criteria. Patients 
in the retrospective cohort were randomly divided into a 
training set (n = 189) and a validation set (validation set 
1, n = 127) at a ratio of 6:4, whereas patients in the pro-
spective cohort were all included into the prospective 
validation set (validation set 2, n = 55). The baseline char-
acteristics of all participating students are presented in 
Table 1. At the 1-month follow-ups, 65 (17.5%) patients 
were categorized into CALs-progressed group, while 306 
(82.5%) patients were categorized into CALs-improved 
group. Except for the significantly higher concentra-
tions of serum fibrinogen (FIB) and interleukin-6 (IL-6) 

in validation set 2 compared to both the training set and 
validation set 1 (both P < 0.05), no other significant dif-
ferences were observed among the three sets, indicating 
that the basically balanced data distribution among three 
datasets.

Extraction and selection of ultrasomics features
Analysis was conducted on 1484 echocardiographic 
images, from which 5636 ultrasomics features were 
extracted within the ROIs. These features encompassed 
504 first-order features, 56 shape features, 2100 textural 
features, and 2976 wavelet-based features.

The performance of ultrasomics features analyzed 
by nine machine learning algorithms for CALs pro-
gression in children with KD are provided in Table  2, 
including accuracy and AUC. The hyperparameters of 
the nine machine learning algorithms used in this study 
are detailed in Table S1. Since the SVM algorithm per-
formed the best on the training set, it was chosen for 
feature selection. By using the optimal SVM algorithm, 
the cumulative performance of top 10 factors according 
to the descending importance was calculated and the 
top eight important variables had satisfactory predic-
tion power (Table  3). On the final selection of features 
from the training set, 8 ultrasomics features were final 
selected. After eliminating the redundancy with cor-
relation coefficients > 0.90, 6 ultrasomics features were 
finally used for further analysis, including a neighbour-
ing gray tone difference matrix (NGTDM) feature, four 
gray-level size zone matrix (GLSZM) features, and a gray 
level dependence matrix (GLDM) feature. To evaluate 
the contribution of the 6 ultrasomics features selected, 
the importance of each factor was gauged and ranked, 
as is illustrated in Fig. 2. Details on the ultrasomics fea-
tures, which can be available in the description of the 
Pyradiomics package (https://pyradiomics.readthedocs.

Fig. 1  The flowchart of the study. Abbreviations KD, Kawasaki disease; CALs, coronary artery lesions; IVIG, intravenous immunoglobulin
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Table 1  Baseline clinical characteristics of the training and validation sets
Characteristics Total

(n = 371)
Training set
(n = 189)

Validation set 1
(n = 127)

Validation set 2
(n = 55)

P

Demographic Information
Age, (months) (%) 19.00 [11.00, 34.00] 20.00 [11.30, 35.00] 17.00 [9.29, 33.00] 19.00 [11.77, 35.00] 0.443
Sex (%)
male 230 (62.0) 120 (63.5) 76 (59.8) 34 (61.8) 0.806
female 141 (38.0) 69 (36.5) 51 (40.2) 21 (38.2)
Clinical Information
Fever duration (days) 6.00 [5.00, 7.00] 5.00 [5.00, 7.00] 6.00 [5.00, 7.00] 6.00 [5.00, 7.00] 0.376
Initial IVIG resistance(%)
+ 37 (10.0) 21 (11.1) 11 (8.7) 5 (9.1) 0.754
- 334 (90.0) 168 (88.9) 116 ( 91.3) 50 (90.9)
KD subtypes, No. (%)
cKD 332 (89.5) 157 (90.8) 127 (88.8) 48 (87.3) 0.802
iKD 39 (10.5) 16 (9.2) 16 (11.2) 7 (12.7)
CALs status
CALs progressed
Yes 65 (17.5) 40 (21.2) 18 (14.2) 7 (12.7) 0.166
No 306 (82.5) 149 (78.8) 109 (85.8) 48 ( 87.3)
Baseline Zmax 2.63 [2.31, 3.48] 2.70 [2.30, 3.53] 2.58 [2.32, 3.34] 2.59 [2.28, 3.50] 0.845
NCAI
1 189 (50.9) 91 (48.1) 73 (57.5) 25 (45.5) 0.389
2 96 (25.9) 52 (27.5) 28 (22.0) 16 (29.1)
3 57 (15.4) 32 (16.9) 14 (11.0) 11 (20.0)
4 29 (7.8) 14 (7.4) 12 (9.4) 3 (5.5)
Laboratory Examination
WBC (*109/L) 15.90 [13.06, 19.68] 16.32 [13.79, 19.70] 15.41 [12.73, 19.13] 14.92 [11.71, 19.88] 0.115
N% 0.69 [0.60, 0.79] 0.69 [0.60, 0.79] 0.68 [0.61, 0.79] 0.68 [0.59, 0.75] 0.544
Hb (g/L) 115.71 (12.82) 115.93 (13.13) 115.43 (12.85) 115.64 (11.85) 0.942
PLT (*109/L) 319.00 [258.00, 405.50] 306.00 [256.00, 391.00] 336.00 [276.00, 422.00] 322.00 [252.00, 403.50] 0.214
CRP (mg/L) 72.00 [43.00, 104.50] 71.00 [41.00, 106.00] 67.00 [44.00, 100.00] 74.52 [46.79, 107.35] 0.478
ESR (mm/60min) 62.00 [46.00, 80.00] 62.00 [47.00, 81.00] 61.00 [43.00, 80.00] 61.00 [43.50, 81.50] 0.517
Na (mmol/L) 136.00 [133.00, 138.00] 135.00 [133.00, 138.00] 136.00 [133.50, 138.00] 135.00 [133.00, 137.00] 0.306
ALB (g/L) 34.70 [32.20, 37.10] 34.30 [31.80, 36.70] 34.70 [32.85, 37.25] 35.10 [32.50, 37.50] 0.11
Tbil (umol/L) 5.10 [3.70, 8.40] 5.10 [3.40, 8.70] 5.30 [3.95, 8.35] 5.40 [3.95, 7.15] 0.652
NT-proBNP (pg/ml) 602.70 [252.25, 1,444.00] 613.80 [253.10, 1,337.00] 553.60 [223.60, 1,202.50] 806.40 [315.80, 2,021.50] 0.281
PT (s) 12.20 [11.50, 12.90] 12.20 [11.50, 12.90] 12.10 [11.40, 12.85] 12.50 [11.60, 12.95] 0.302
FIB (g/L) 4.92 [4.38, 5.84] 4.96 [4.52, 5.85] 4.79 [4.30, 5.62] 5.34 [4.57, 6.04] 0.037
APTT (s) 30.30 [27.90, 33.00] 30.30 [27.90, 33.30] 30.00 [27.55, 32.50] 30.60 [28.55, 33.15] 0.359
D-Dimer (ug/L) 1.15 [0.65, 2.08] 1.16 [0.72, 2.07] 1.00 [0.56, 2.06] 1.20 [0.68, 2.25] 0.304
INR 1.06 [1.00, 1.13] 1.06 [1.00, 1.13] 1.05 [0.99, 1.12] 1.10 [1.01, 1.13] 0.258
FDP (ug/ml) 4.98 [3.20, 7.72] 5.10 [3.50, 7.70] 4.80 [2.90, 7.98] 4.69 [3.09, 6.90] 0.527
TT (s) 16.20 [15.50, 17.00] 16.10 [15.40, 17.10] 16.20 [15.50, 17.00] 16.00 [15.55, 16.75] 0.458
TNF-α (pg/ml) 18.00 [13.85, 24.95] 18.30 [13.30, 25.00] 16.60 [14.30, 22.70] 20.60 [14.70, 27.40] 0.188
IL-6 (pg/ml) 20.80 [7.58, 59.60] 20.70 [7.73, 68.40] 17.50 [6.12, 43.11] 39.20 [13.05, 57.10] 0.023
sIL-2R (pg/ml) 2,043.00 [1,346.00, 

2,980.00]
2,062.00 [1,353.00, 
3,452.00]

2,001.00 [1,326.00, 
2,767.00]

2,047.00 [1,490.50, 
3,065.00]

0.595

IL-8 (pg/ml) 19.70 [12.75, 37.45] 21.20 [13.70, 41.90] 17.90 [12.00, 31.65] 16.90 [11.70, 30.30] 0.101
IL-10 (pg/ml) 7.84 [2.50, 19.50] 8.58 [2.50, 21.00] 7.23 [2.50, 15.30] 6.90 [2.50, 23.80] 0.425
Abbreviations: IVIG, intravenous immunoglobin; KD, Kawasaki disease; cKD, complete Kawasaki disease; iKD, incomplete Kawasaki disease; CALs, coronary artery 
lesions; Zmax, the maximum Z score; NCAI, number of coronary arteries involved; WBC, white blood cell; N%, neutrophil percent; Hb, haemoglobin; PLT, platelet; 
CRP, C-reaction protein; ESR, erythrocyte sedimentation rate; Na, serum sodium; ALB, albumin; Tbil, total bilirubin; NT-proBNP, N-Terminal pro-brain natriuretic 
peptide; PT, prothrombin time; FIB, Fibrinogen; APTT, activated partial thromboplastin time; INR, international Normalized Ratio; FDP, fibrin degradation products; 
TT, thrombin time; TNF-α, tumor necrosis factor-α; IL-6, interleukin-6; sIL-2R, soluble interleukin-2 receptor; IL-8, interleukin-8; IL-10, interleukin-10
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io/en/latest/features.html#), are listed in supplementary 
materials (Table S2).

Selection of clinical parameters
As shown in the Table  4, the bidirectional stepwise 
approach selected three variables to construct the clinical 
model, which were number of coronary arteries involved 
(OR: 2.40, P < 0.01), albumin (ALB) (OR: 0.90, P = 0.08), 
and FIB (OR: 1.30, P < 0.01).

Predictive models construction and evaluation
The construction and evaluation of clinical model, ult-
rasomics model and clinical-ultrasomics model in the 
training set and two validation sets are presented in 
Figs. 3, 4 and 5. The AUROC of ultrasomics model in the 
training set (0.69) was found to underperform the clinical 
model (0.78), while the clinical-ultrasomics model (0.83) 
exhibited better predictive performance (Fig. 3A). Similar 
results were observed in the internal validation set and 
the prospective validation set (Fig.  3B and C), confirm-
ing the additional prognostic performance of ultrasomics 
features. Moreover, the AUPRC and DCA also validated 
that the clinical-ultrasound omics model outperformed 
the single clinical model and the ultrasound omics model 

Table 2  Prediction of ultrasomics features analyzed by 9 
machine learning algorithms for CALs progression in children 
with KD
Algorithms ACC  AUROC
Decision tree 0.80 0.49
SVM 0.83 0.67
RF 0.83 0.52
KNN 0.84 0.48
GBM 0.80 0.54
XGBM 0.78 0.46
LGBM 0.82 0.56
mLP 0.84 0.37
bNB 0.84 0.52
Abbreviations:  ACC, accuracy; AUROC,  area under the receiver operating 
characteristic curve;  SVM, support vector machine; RF, random forest; 
KNN,  K-nearest neighbor; GBM, Gradient boosting machine; XGBM, Extreme 
gradient boosting machine; LGBM, Light gradient boosting machine; mLP, 
multi-Layer perceptron; bNB, Bernoulli naive Bayes

Table 3  Distributions of AUC, accuracy and precision with the 
cumulating number of top 10 important factors in an ascending 
order
Number of top 10 factors in rank AUROC ACC  Precision
1 0.60 0.80 0.20
2 0.51 0.73 0.11
3 0.52 0.77 0.10
4 0.52 0.80 0.20
5 0.52 0.80 0.20
6 0.52 0.80 0.20
7 0.53 0.83 0.25
8 0.60 0.80 0.14
9 0.60 0.80 0.14
10 0.59 0.78 0.10
Abbreviations: AUROC, area under the receiver operating characteristic curve; 
ACC, accuracy

Table 4  Multivariable logistic regression for clinical variables
Variables Multivariable logistic regression

OR 95% CI P value
NCAI 2.44 1.68–3.64 < 0.01
ALB 0.90 0.84–0.95 0.08
FIB 1.31 1.00-1.73 < 0.01
Abbreviations: OR odds ratios; CI confidence interval; NCAI number of coronary 
arteries involved; ALB albumin; FIB; fibrinogen

Fig. 2  Top 6 ultrasomics features for predicting for CALs progression of KD patients in a descending order of importance. Abbreviations: KD, Kawasaki 
disease; CALs, coronary artery lesions; LAD, left anterior descending artery; RCAm, the middle segment of right coronary artery;  NGTDM, neighbouring 
gray tone difference matrix; GLSZM, gray-level size zone matrix; GLDM, gray level dependence matrix; GLRLM, gray-level run-length matrix.
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in both the training set and two validation sets (Fig. 4and 
Fig. 5).

Discussion
In the present study, we developed three models to pre-
dict the CALs progression from KD onset to the 1-month 
follow-up, including a model based on clinical param-
eters, a model based on ultrasomics features, and an 
integrated model that combined clinical parameters and 
ultrasomics features. Furthermore, validation across two 
sets revealed that the clinical-ultrasomics model consis-
tently outperformed both the individual clinical and ult-
rasomics model.

In our previous study, we developed a predictive model 
based on clinical parameters to forecast CAL progres-
sion at 1 month after KD onset, achieving an AUC value 

of 0.8030. As we know, echocardiography is currently the 
primary method for assessing CAL in KD, and ultraso-
mics technology can detect subtle changes in ultrasound 
images that are not visible to the naked eye. In order to 
explore whether adding ultrasound imaging informa-
tion can improve the predictive power of the model, the 
present study was designed and conducted. The pres-
ent study showed that the clinical-ultrasomics model 
achieved an AUC value of 0.84, surpassing the previous 
model [30]. Additionally, this study broadened the mod-
el’s applicability and proved its robustness by validating 
its performance with a prospective cohort, whereas the 
applicability of the previous model remained unknown as 
it was only validated internally. To the best of our knowl-
edge, this is the first study to investigate the value of 

Fig. 4  The PRCs for ultrasomics model, clinical model, and the clinical-ultrasomics model in three sets. PRCs for three models in the training set. PRCs for 
three models in validation set 1. PRCs for three models in validation set 2. Abbreviations: PRC, Precision-recall curve; AUPRC, area under the precision-recall 
curve

 

Fig. 3  AThe ROC curves for ultrasomics model, clinical model, and the clinical-ultrasomics model in three sets:B ROC curves for three models in validation 
set 1. ROC curves for three models in validation set 2. Abbreviations: ROC, receiver operating characteristics; AUC, area under curve
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ultrasomics based on baseline echocardiographic images 
in predicting the progression of CALs in KD patients.

The clinical model was constructed based on three 
variables, that is the number of coronary arteries 
involved, ALB, and FIB. Extensive research has consis-
tently demonstrated an association between a greater 
number of involved coronary arteries and lower serum 
ALB levels with CALs progression in KD patients [7, 9, 
31, 32], aligning with our own findings. FIB, an acute-
phase protein synthesized in the liver under inflam-
matory or traumatic conditions, is indicative of both 
hypercoagulation and severe inflammation in patients. 
Chen et al. [33] observed significantly elevated FIB levels 
in KD compared to healthy controls. Additionally, Liu et 
al. [34] demonstrated that plasma FIB concentration in 
KD patients with CALs was notably higher than in those 
without CALs. Our study further extended these find-
ings, establishing an association between FIB levels and 
the progression of CALs in KD.

In this study, SVM was the best machine learning 
algorithm when predicting the CALs progression of KD 
patients. SVM constructs a hyperplane concept to clas-
sify observations and is the closest machine learning 
algorithm close to DL, which might account for its opti-
mal performance in this study. The present study identi-
fied three texture-based features and three higher-order 
features obtained by wavelet transformation of the origi-
nal images. These features partially reflect the texture 
changes in echocardiograms, suggesting that KD patients 
at high risk of CAL progression may exhibit texture 
changes invisible to the naked eye at disease onset. More-
over, the most significant ultrasomics features in the 
model were all related to the LAD and the proximal or 

middle segment of RCA. This may be due to the subop-
timal visualization of distal coronary segments by echo-
cardiography compared to other segments [1]. Given that 
our study was designed based on echocardiographic find-
ings, it’s comprehensible that the most significant ultra-
somics features were associated with the LAD and RCA. 
Although most of the ultrasomics features identified in 
our study were associated with the middle segmentation 
of RCA, the most significant feature was the LAD related 
features. Hence, our findings highlight the importance of 
examining multiple sites of coronary arteries to gather 
comprehensive information.

The diagnosis of KD primarily relies on clinical find-
ings, laboratory indicators, and echocardiographic 
observations, all of which lack specificity. While echo-
cardiographic imaging aids in KD diagnosis, it alone is 
insufficient for KD diagnosis due to the presence of CAD 
in other febrile diseases [35, 36]. In the present study, the 
ultrasomics model didn’t surpass the clinical model in 
predicting CALs progression. This could be attributed to 
the clinical model encompassed both laboratory indica-
tors (ALB and FIB) and echocardiographic finding (the 
number of involved coronary arteries), whose informa-
tion spectrum was broader than the ultrasomics model. 
Nevertheless, our findings demonstrate that ultrasomics 
features extracted from echocardiographic images can 
enhance the prediction of CALs progression when com-
bined with clinical parameters, as evidenced by the supe-
rior performance of the clinical-ultrasomics model across 
three distinct datasets. This trend holds promise as it 
offers deeper insights into managing KD patients and 
provides valuable guidance for future research directions. 
As multiple studies have demonstrated the superiority 

Fig. 5  The DCA for ultrasomics model, clinical model, and the clinical-ultrasomics model in three sets. DCA for three models in the training set. DCA for 
three models in validation set 1. DCA for three models in validation set 2. Abbreviations: DCA: Decision curve analysis
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of CCTA in detecting CALs located in the distal seg-
ments and the left circumflex branches of coronary arter-
ies compared with TTE [37, 38], exploring CTCA-based 
radiomics to identify at-risk KD patients with CALs war-
rants further investigation.

Several limitations should be acknowledged. Firstly, 
despite we validated the prediction models with a pro-
spective cohort in our center, the absence of external vali-
dation may restrict the generalizability of our findings. 
Secondly, our reliance on static baseline echocardio-
graphic images provides only a snapshot of the condition 
at the time of image capture. The utilization of dynamic 
video records might potentially offer more comprehen-
sive information, thereby enhancing predictive capa-
bilities. Thirdly, as the clinical-ultrasomics model was 
applied to KD patients with CALs detected by baseline 
echocardiography to predict the outcome of their CALs 
at 1 month in the course of KD, the access to high-quality 
images and the manual segmentation of typical areas of 
CALs by echocardiography specialist are prerequisites 
for its application. Fourth, the ROIs of CALs were manu-
ally segmented in the present study, which could be sub-
jective and introduce observers’ bias. Semi-automatic 
or automatic segmentation methods are needed in the 
future. Last but not least, the imbalance in the number 
of patients between the two groups within our datasets 
contributed to the relatively low specificity observed in 
all three prediction models. Addressing this imbalance by 
increasing the number of CALs-progressed KD patients 
to align more closely with the control group’s size may 
mitigate this issue.

Conclusions
Our study demonstrated that prediction model involving 
echocardiogram-based ultrasomics features and clinical 
parameters has a good predictive efficacy in forecast-
ing CALs progression in 1-month follow-up among KD 
patients with CALs. This highlights the promising poten-
tial of ultrasomics in predicting CALs progression using 
baseline echocardiographic images, providing clinicians 
a valuable tool to detect CALs at their early stages and 
consequently aiding in the tailoring of individualized 
treatment for KD.
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