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Abstract
Background Diabetic peripheral neuropathy (DPN) in children and adolescents with type 1 diabetes mellitus (T1DM) 
is a growing issue, with controversial data in the terms of prevalence and evaluation timelines. Currently, there are no 
clear standards for its early detection. Therefore, our aim was to assess the contribution of the Michigan neuropathy 
screening instrument (MNSI), lipid profile, serum neuron specific enolase (NSE), and serum heat shock protein 27 (HSP 
27) to the prediction of DPN in children and adolescents with T1DM.

Methods In this case-control study, fifty children diagnosed with T1DM for at least five years were enrolled and 
evaluated through complete neurological examination, MNSI, and nerve conduction study (NCS). Additionally, HbA1c, 
lipid profile, serum NSE, and serum HSP 27 levels were measured for patients and controls.

Results The prevalence of DPN in our study was 24% by NCS, and electrophysiological changes showed a statistically 
significant lower conduction velocity for the posterior tibial and sural nerves, as well as a prolonged latency period for 
the common peroneal and sural nerves in neuropathic patients. In these patients, older age, earlier age of diabetes 
onset, longer disease duration, higher total cholesterol, triglycerides, low density lipoprotein cholesterol, HbA1c, 
serum NSE, and HSP27 levels were observed. The MNSI examination score ≥ 1.5 cutoff point had an area under the 
curve (AUC) of 0.955, with 75% sensitivity and 94.74% specificity, according to receiver operating characteristic curve 
analysis. However, the questionnaire’s cutoff point of ≥ 5 had an AUC of 0.720, 75% sensitivity, and 63% specificity, with 
improved overall instrument performance when combining both scores. Regarding blood biomarkers, serum NSE had 
greater sensitivity and specificity in discriminating neuropathic patients than HSP27 (92% and 74% versus 75% and 
71%, respectively). Regression analysis revealed a substantial dependency for MNSI and serum NSE in predicting DPN 
in patients.

Conclusions Despite limited research in pediatrics, MNSI and serum NSE are promising predictive tools for DPN 
in children and adolescents with T1DM, even when they are asymptomatic. Poor glycemic control and lipid profile 
changes may play a critical role in the development of DPN in these patients, despite conflicting results in various 
studies.
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Background
Among children and adolescents, type 1 diabetes melli-
tus (T1DM) is one of the most common chronic diseases, 
representing nearly 98% of diabetes cases underage of 
10 years and 87% in adolescents with diabetes. There-
fore, diabetic peripheral neuropathy (DPN) in children 
and adolescents is becoming more prevalent especially 
with early age of onset, longer lifetime, and poor glyce-
mic control [1–3]. The American Diabetes Association 
(ADA) recommended that all patients with T1DM should 
be assessed for distal peripheral neuropathy (PN) 5 years 
following diagnosis, and at least annually after that. Nev-
ertheless, the reported prevalence of DPN in children and 
adolescents with T1DM is scarce among different studies 
and ranges from 3 to 62%, which may be owed to racial 
and ethnic differences and the variability of methods 
used in characterizing and diagnosing neuropathy [4–6].

Clinically apparent presentation of DPN is uncommon 
in pediatric populations; still, the development of DPN 
may begin early during diabetes course, and subclini-
cal autonomic neuropathy may develop within the first 
two years of T1DM diagnosis and within a year in type 
2 diabetes mellitus (T2DM) [3, 7]. The nerve conduction 
study (NCS) is the gold standard test for diagnosing PN 
by measuring an individual’s peripheral nerve’s capac-
ity to send electrical signals, however, the test is costly, 
time-consuming, and necessitates professional expertise 
[8]. To overcome these obstacles, a few clinical grading 
systems have been created, including Michigan neurop-
athy screening instrument (MNSI), which is a low-cost, 
non-invasive, and simple-to-use tool that both patients 
and doctors can employ to evaluate possibility of PN [9]. 
Despite this, there is still insufficient data about its sig-
nificance in children.

Dyslipidemia is showing an increasing prevalence in 
T1DM, and the wealth of evidence gathered in recent 
years shows the significant contribution of serum lipid 
profiles to DPN. Although a variety of factors could be 
involved, the precise processes by which they may affect 
peripheral nerves in children with T1DM and their link 
remain unclear and contradictory [10–13].

According to reports, up to 50% of cases of DPN may 
not exhibit any symptoms [7]. Therefore, the presence of 
reliable and practical biomarkers that are related to the 
progression of DPN, together with clinical symptoms and 
neurological findings, may help in the early detection of 
the condition [14]. Neuron specific enolase (NSE) is well 
known as a tumor marker and is a measure of nerve dam-
age. Studies have shown that disorders leading to com-
paratively rapid neuronal damage tend to have higher 

serum and cerebrospinal fluid levels of NSE. Addition-
ally, its serum levels may be altered through degenera-
tion and regeneration of peripheral nerves due to chronic 
hyperglycemia and associated oxidative stress [15]. Fur-
thermore, various studies have investigated serum levels 
of a small protein called heat shock protein 27 (HSP 27), 
which is crucial for cells’ defense against stress in patients 
with diabetic neuropathy [16]. In experimental models 
of axon injury, HSP 27 plays a critical role in both axo-
nal regeneration and neuron survival. Moreover, familial 
polyneuropathies can result from mutations in HSP 27 
[17, 18]. Still, there is a dearth of information available 
regarding them in children with DPN.

Herein, guided by NCS, our goal was to assess the role 
of MNSI, lipid profile, serum HSP 27, and serum NSE in 
predicting asymptomatic DPN in children and adoles-
cents with T1DM.

Methods
A total of 63 children diagnosed with T1DM for at least 
5 years were recruited from the Pediatric Endocrinol-
ogy Clinic at Menoufia University Hospitals between July 
2022 and June 2023. Patients previously diagnosed with 
PN related to diabetes or other reasons (e.g., vitamin B12 
deficiency, other autoimmune diseases, infections, drugs, 
tumors, inherited disorders, or exposure to toxins) were 
excluded from the study. Thirteen children were also 
excluded as their caregivers rejected NCS, so 50 patients 
completed the study with 50 age- and sex-matched 
apparently healthy children as controls.

After obtaining an informed consent, all patients were 
subjected to a detailed clinical history emphasizing the 
age of onset and duration of T1DM, insulin regimen, 
adherence to therapy, and blood glucose monitoring 
methods. Anthropometric measurements such as height, 
weight, and body mass index (BMI) were recorded, and 
a complete physical and neurological examination was 
conducted. Assays for HbA1c, lipid profile, serum NSE, 
and HSP27 were measured for both patients and con-
trols, and only patients were subjected to MNSI scoring 
and NCS.

MNSI includes both questionnaire and physical exami-
nation parts. A handful of the questions were translated 
to native language to make them more understandable 
for the study participants. Responses to the questionnaire 
by answering “yes” to questions 1–3, 5–6, 8–9, 11–12, 
14–15 and “no” to questions 7 and 13 give one point for 
each question. Questions 10, “Do you feel weak all over 
most of the time?” and 4, “Do you get muscle cramps in 
your legs and/or feet?” were excluded from the published 
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scoring methodology because they were deemed to rep-
resent measures of general asthenia and poor circulation, 
respectively [19, 20].

During the MNSI examination, each foot was inspected 
for deformities, dry skin, calluses, infections, and fis-
sures, and given a score of 1 for any abnormality. The 
ankle reflex was also elicited and received a score of 0.5 
if it tested positive with reinforcement and 1 if absent. 
Vibration sensation was tested by using a 128-Hz tuning 
fork over the great toe and received 0.5 if vibration was 
sensed for ≥ 10 s and 1 if absent. Using the 10-gm nylon 
monofilament placed gently on the child’s big toe while 
closing his eyes, light-touch perception was tested and 
scored 1 if failed to be detected at all and scored 0.5 if the 
child detected the filament in less than 8 out of 10 test 
repetitions [19, 20].

Patients in the current study underwent NCS on both 
sides for common peroneal, posterior tibial, and sural 
nerves. Peripheral neuropathy is considered when there 
are abnormalities in at least two of the electrophysiologi-
cal parameters; action potential (AP) amplitude and con-
duction velocity falling below the third percentile value of 
the control, and distal latency being prolonged than the 
upper normal limit. These limits were 2 milivolt (mV), 
44  m/second (m/sec) and 6.5 millisecond (ms) for the 
common peroneal nerve; 4 mV, 41 m/sec and 5.8 ms for 
the posterior tibial nerve; and 6 microvolt (µV), 40 m/sec 
and 4.4 ms for the sural nerve, respectively [21, 22].

In the laboratory evaluation, venous blood samples 
were withdrawn, and serum was separated under aseptic 
conditions. The AU 680 Beckmann autoanalyzer (Beck-
mann) was used for immediate assay of HbA1c, total 
cholesterol (TC), low-density lipoprotein cholesterol 
(LDL-C), high-density lipoprotein cholesterol (HDL-C), 
and triglycerides (TG). A serum aliquot was stored at 
− 20  °C until serum NSE and HSP27 were estimated by 
enzyme linked immunosorbent assay (ELISA) according 
to manufacturer’s protocol (SunRed, China).

Statistical analysis
Normally and non-normally distributed quantitative 
data were presented as mean ± standard deviation and 
as median (interquartile range), respectively. When 
comparing means, the Mann-Whitney U test and t-test 
were used for non-normally and normally distributed 
data, respectively. Correlations were tested using Spear-
man and Pearson coefficients. Statistical significance 
was considered at a p-value ≤ 0.05. The receiver Operat-
ing Characteristic (ROC) curve was used to assess the 
discriminating performance of serum NSE, HSP27 and 
MNSI. Linear regression analysis was used to assess pre-
dictors of DPN in the studied patients. All analyses were 
performed using IBM SPSS Statistics for Windows, Ver-
sion 20.0. (IBM Corp, Armonk, NY).

In accordance with a review of an earlier study [15], 
statistics and the Sample Size Pro tool version 6 deter-
mined the sample size to be at least 40 subjects, with 80% 
study power and 95% confidence level.

Results
The mean age of studied patients with T1DM was 
comparable to that of the controls (13.70 ± 2.97 versus 
13.68 ± 2.97 years). HbA1c, TC, TG, LDL-C, NSE and 
HSP27 showed a higher statistical significance in patients 
than in controls (Table  1). All diabetic children were 
on an intensive insulin regimen (basal and bolus doses 
through daily multiple injections), and none of them had 
continuous glucose monitoring through glucose sensors; 
only capillary blood glucose testing from a fingertip prick 
was used. Their mean HbA1c was 8.91 ± 1.17%.

The prevalence of DPN among the studied patients 
detected through NCS was 24% (12/50). Compared to 
non-neuropathic patients, neuropathic patients had sta-
tistically higher levels of HbA1c, TC, TG, LDL-C, NSE, 
and HSP27, as well as significantly older age, earlier age 
of diabetes onset, and longer disease duration. A higher 
BMI was also observed in neuropathic patients, despite 
being within normal ranges. Additionally, neuropathic 
patients had higher median MNSI questionnaire and 
examination score 5 and 2 compared to 4 and 0 in non-
neuropathic patients, respectively. Furthermore, neu-
ropathic patients had a marked reduction in sural AP 
amplitudes by NCS, with mild slowing of the conduction 
velocities of posterior tibial and sural nerves. There was 
also a statistically significant difference concerning the 
distal latencies of the common peroneal and sural nerves 
between neuropathic and non-neuropathic patients, but 
still within the normal range for age (Tables 2and Fig. 1).

Regarding correlations between the studied param-
eters, HbA1c exhibited a statistically significant positive 
correlation with TC, LDL-C, TG, HSP27, NSE, the MNSI 
questionnaire, the MNSI examination and sural nerve 
distal latency (r = 0.296; p = 0.037, r = 0.421; p = 0.002, 
r = 0.461; p = 0.001, r = 0.283; p = 0.046, r = 0.512; p < 0.001, 
r = 0.282; p = 0.047, r = 0.456; p = 0.001, r = 0.417; p = 0.003, 
r = 0.433; p = 0.002, respectively), and a statistically sig-
nificant negative association with the conduction veloci-
ties of the sural, posterior tibial, and common peroneal 
nerves (r=-0.388; p = 0.005, r=-0.316; p = 0.025, r=-0.385; 
p = 0.006, respectively). Elevated TC, LDL-C, and TG 
levels were inversely correlated with sural conduction 
velocity (r=-0.316; p = 0.025, r=-0.560; p < 0.001, r=-0.281; 
p = 0.048, respectively).

NSE showed a statistically significant positive corre-
lation with disease duration, HbA1c, HSP27, the MNSI 
questionnaire, the MNSI examination, and sural nerve 
distal latency (r = 0.387; p = 0.005, r = 0.512; p < 0.001, 
r = 0.542; p < 0.001, r = 0.342; p = 0.015, r = 0.496; p < 0.001, 
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r = 0.311; p = 0.028, respectively), and a statistically sig-
nificant negative correlation with sural AP amplitude 
and the conduction velocities of the sural, posterior tibial 
and common peroneal nerves (r=-0.285; p = 0.045; r=-
0.404; p = 0.004, r=-0.331; p = 0.019, r=-0.280; p = 0.049, 
respectively) (Fig. 2). HSP27 had a statistically significant 
positive correlation with HbA1c, LDL-C, NSE, the MNSI 
questionnaire, and the MNSI examination (r = 0.283; 
p = 0.046, r = 0.311; p = 0.028, r = 0.542; p < 0.001, r = 0.337; 
p = 0.017, r = 0.474; p = 0.001, respectively), and a statisti-
cally significant negative correlation with sural AP ampli-
tude (r=-0.333; p = 0.018).

With 75% sensitivity, 94.74% specificity, a 0.955 area 
under the curve (AUC), and p < 0.001, ROC analysis 
determined that a score of ≥ 1.5 for the MNSI exami-
nation was the best cutoff point for differentiating 
between neuropathic and non-neuropathic patients. 
For the MNSI questionnaire, the best cutoff point was 
≥ 5, with 75% sensitivity, 63% specificity, a 0.720 AUC, 
and p = 0.002. Additionally, the entire MNSI score dem-
onstrated 91.67% sensitivity, 89.47% specificity, a 0.951 
AUC, and p < 0.001 at the optimal cutoff point of ≥ 6.5. 

Furthermore, compared to 66.92 ng/ml, a 0.814 AUC, 
75% sensitivity, 71% specificity, and p < 0.001 for HSP27, 
NSE discriminated PN at a best cutoff point of 40.79 ng/
ml with a 0.890 AUC, 92% sensitivity, 74% specificity, and 
p < 0.001 (Figs. 3 and 4).

Disease duration, HbA1c, TG, LDL-C, NSE, HSP27, 
and MNSI all showed a statistically significant association 
with DPN in univariate regression analysis. Nevertheless, 
in multivariate regression analysis, NSE and MNSI were 
the sole dependent predictors for DPN (Table 3).

Discussion
Globally, the prevalence of both type 1 and type 2 dia-
betes is rising, and DPN is among the most distressing 
and costly chronic consequences of diabetes, leading to 
severe impairment and a poor quality of life, particularly 
in young individuals. DPN is frequently asymptomatic at 
early stages; however, once symptoms appear, there is no 
turning back. Thus, it is imperative to diagnose diabetic 
neuropathy early and take prompt action to stop its pro-
gression [23]. Our results reported DPN in 24% of the 
studied children evaluated by NCS, despite none of them 

Table 1 Comparison between clinical and laboratory data in patients and controls
Variables Patients (n = 50) Controls (n = 50) p-value
Sex: n(%)
Male
Female

19 (38.0%)
31 (62.0%)

20 (40.0%)
30 (60.0%)

0.838

Age (years)
Mean ± SD 13.70 ± 2.97 13.68 ± 2.97 0.973
Consanguinity n(%)
Present
Absent

13 (26.0%)
37 (74.0%)

5 (10.0%)
45 (90.0%)

0.037*

Weight z score
Mean ± SD 0.62 ± 0.53 0.56 ± 0.48 0.554
Height z score
Mean ± SD -0.13 ± 0.73 0.19 ± 0.74 0.032
Body mass index z score
Mean ± SD 0.75 ± 0.58 0.59 ± 0.34 0.096
HbA1c (%)
Mean ± SD 8.91 ± 1.17 4.57 ± 0.25 < 0.001**
Total cholesterol (mg/dL)
Mean ± SD 155.74 ± 12.36 143.86 ± 11.23 < 0.001**
Triglycerides (mg/dL)
Mean ± SD 96.96 ± 23.31 87.56 ± 9.92 0.011*
LDL-C (mg/dL)
Mean ± SD 89.92 ± 13.97 78.68 ± 6.14 < 0.001**
HDL-C (mg/dL)
Mean ± SD 57.14 ± 9.89 56.28 ± 9.34 0.656
Serum neuron specific enolase (ng/ml)
Median (IQR) 36.45 (15.91–47.94) 11.98 (11.19–14.52) < 0.001**
Serum heat shock protein 27 (ng/ml)
Median (IQR) 59.43 (19.48–77.89) 18.69 (17.49–19.85) < 0.001**
HDL-C; high density lipoprotein cholesterol, IQR; inter quartile range, LDL-C; low density lipoprotein cholesterol, SD; standard deviation, * Statistically significant at 
p ≤ 0.05, ** highly Statistically significant p < 0.001
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having sought medical advice for DPN or having under-
gone a previous NCS.

NCS in T1DM exhibit diffuse alterations in a predict-
able manner that correlates with physical findings and 
long-term glycemic control, even in asymptomatic dia-
betic patients, in whom clinical examination may be less 
sensitive and specific [24]. However, it is laborious, costly, 
requires special expertise, and may possibly be declined 
by patients [8]. Moreover, the impairments in motor, sen-
sory, and autonomic functions linked to DPN cannot be 
reliably assessed with a single clinical technique. There-
fore, the ADA advised that DPN screening be carried out 
using a full clinical history, a comprehensive foot exami-
nation, a 10-g Semmes-Weinstein monofilament assess-
ment, and at least one of vibration perception, pinprick, 
temperature perception, or ankle reflexes assessment. 
Thus, a systematic method to evaluate these deficits is 

medically necessary, especially in low-resource settings 
[25, 26].

Regarding this, many studies have highlighted the 
MNSI as a straightforward, non-invasive, and easy to 
use tool for assessing distal symmetrical PN in diabetic 
adults, with a sensitivity and specificity of up to 80% and 
95%, respectively [2, 9, 20, 24, 27, 28]. Nevertheless, little 
research is available about the MNSI role as a screening 
tool for DPN in diabetic children. A systematic review 
by Franceschi et al. concluded that the MNSI is a use-
ful practical tool with good sensitivity and specificity in 
detecting distal PN in children and adolescents, despite a 
lack of validation in these age categories [6]. Additionally, 
a recent study on diabetic adolescents highlighted that a 
positive MNSI questionnaire should raise concerns about 
possible early impairment to the sensory and motor 
nerve components [29].

Table 2 Comparison between clinical data, laboratory data, Michigan neuropathy screening instrument and electrophysiological 
parameters in neuropathic and non-neuropathic patients
Variables Neuropathic patients

(n = 12, 24%)
Non-neuropathic patients
(n = 38, 76%)

p-value

Sex n(%)
Male
Female

5 (41.7%)
7 (58.3%)

14 (36.8%)
24 (63.2%)

1.000

Age (years) Mean ± SD 16.92 ± 0.90 12.68 ± 2.65 < 0.001**
Age of onset of T1DM (years) Median (IQR) 3.5 (3–7) 7 (4–10) 0.003*
Disease duration (years) Mean ± SD 9.17 ± 0.72 6.68 ± 1.58 < 0.001**
Weight z score 0.64 ± 0.55 0.62 ± 0.53 0.911
Height z score -0.39 ± 0.62 -0.05 ± 0.74 0.157
Body mass index z score 0.96 ± 0.49 0.64 ± 0.43 0.035*
HbA1c (%) Mean ± SD 10.41 ± 0.49 8.43 ± 0.85 < 0.001**
Total cholesterol (mg/dL) Mean ± SD 166.75 ± 14.40 152.26 ± 9.43 0.006*
Triglycerides (mg/dL) Mean ± SD 109.83 ± 29.89 92.89 ± 19.58 0.027*
LDL-C (mg/dL) Mean ± SD 104.17 ± 17.49 85.42 ± 8.99 < 0.001**
HDL-C (mg/dL) Mean ± SD 61.42 ± 12.22 55.79 ± 8.79 0.160
Serum neuron specific enolase (ng/ml)
Median (IQR) 51.05 (44.85–58.46) 33.35 (14.23–43.07) < 0.001**
Serum heat shock protein 27 (ng/ml)
Median (IQR) 82.70 (62.93–85.78) 49.94 (17.62–73.01) < 0.001**
MNSI questionnaire score Median (IQR)
MNSI examination score Median (IQR)

5 (4.25-6)
2 (1.13–2.5)

4 (4–5)
0 (0–0)

0.034*
< 0.001**

Sural nerve
Action potential amplitude (µV) Mean ± SD
Conduction velocity (m/s) Mean ± SD
Distal latency (ms) Mean ± SD

7.75 ± 4.51
39.83 ± 3.51
4.45 ± 0.28

10.34 ± 8.36
46.82 ± 1.71
3.88 ± 0.13

0.168
< 0.001**
< 0.001**

Posterior tibial nerve
Action potential amplitude (mV) Mean ± SD
Conduction velocity (m/s) Mean ± SD
Distal latency (ms) Mean ± SD

9.58 ± 1.21
39.25 ± 1.06
4.82 ± 0.15

9.49 ± 0.83
48.97 ± 1.15
4.81 ± 0.18

0.828
< 0.001**

0.946
Common peroneal nerve
Action potential amplitude (mV) Mean ± SD
Conduction velocity (m/s) Mean ± SD
Distal latency (ms) Mean ± SD

3.69 ± 1.41
49.92 ± 3.26
6.26 ± 0.24

4.61 ± 1.11
50.24 ± 0.82
4.94 ± 0.24

0.060
0.576

< 0.001**
HDL-C; high density lipoprotein cholesterol, IQR; inter quartile range, LDL-C; low density lipoprotein cholesterol, MNSI; Michigan Neuropathy Screening Instrument, 
mV; millivolt, µV; microvolt, m/s; meter per second, ms; millisecond, SD; standard deviation, T1DM; type 1 diabetes mellitus, * Statistically significant at p ≤ 0.05, ** 
highly Statistically significant p < 0.001
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Feldman et al. [19] determined a score ≥ 2.5 for the 
MNSI examination and a score ≥ 7 for the question-
naire to identify PN in diabetic adults. Later, Herman et 
al. [20] defined a new cutoff point ≥ 4 for the question-
naire, which improved the instrument efficiency. Con-
cerning this, our findings highlighted that the MNSI 

examination score at ≥ 1.5 was a good specific test, with 
an AUC of 0.955, 94.74% specificity, and 75% sensitiv-
ity. On the other hand, the MNSI questionnaire showed 
the same sensitivity of 75% but lower specificity of 63%, 
with an AUC of 0.720 at the ≥ 5 cutoff point. This find-
ing may be related to the questionnaire’s subjectivity and 

Fig. 1 Electrophysiological changes in the studied peripheral nerves in neuropathic and non-neuropathic patients
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Fig. 2 Correlations between serum neuron specific enolase levels and sural nerve electrophysiological parameters in the studied patients
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dependence on patients’ or their caregivers’ understand-
ing of the required questions. Additionally, by combing 
both scores, overall sensitivity and specificity improved 
to 91.67% and 89.47%, respectively, with an AUC of 0.951. 
These results highlight the potential utility of MNSI in 
the screening of DPN in children and adolescents, but 
more research is required to validate and standardize its 
use in pediatrics.

Numerous studies have looked at the impact of hyper-
glycemia and dyslipidemia on DPN. The overall evidence 
continues to indicate that in T1DM, poor glycemic con-
trol and longer disease duration are associated with an 

increased risk of DPN. On the other hand, well-con-
trolled hyperglycemia delays the development and pro-
gression of DPN, particularly when HbA1c values are 
below the 7.0% and 6.5% ranges, as advised by the ADA 
and the International Diabetes Federation, respectively 
[3, 30]. For dyslipidemia, oxidized LDL particles and free 
fatty acids may contribute to neuronal damage through 
generating reactive oxygen species, releasing pro-inflam-
matory substances, and adversely affecting healthy nerve 
myelination [31, 32]. Moreover, others have highlighted 
an upsurge association between poor glycemic control 
and increased levels of lipid peroxidation and oxidative 

Fig. 3 Receiver operating characteristic (ROC) curve for Michigan neuropathy screening instrument (MNSI) questionnaire, examination, and total scores 
to discriminate neuropathic patients from non-neuropathic ones
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Table 3 Univariate and multivariate regression analysis for detection of diabetic peripheral neuropathy predictors in the patients
Predictor Univariable Multivariable

cOR 95% CI p-value aOR 95% CI p-value
Disease duration (years) 3.569 1.604–7.940 0.002*
MNSI questionnaire score 2.259 1.120–4.555 0.023*
MNSI examination score 54.0 7.818–372.984 < 0.001** 26.765 1.070–669.483 0.045*

MNSI total score 5.001 1.925–12.997 0.001* 6.989 1.197–40.812 0.031*

HbA1c (%) 26.517 2.669-263.462 0.005*
LDL-C (mg/dl) 1.120 1.042–1.205 0.002*
Triglycerides (mg/dl) 1.034 1.002–1.067 0.034*

Serum heat shock protein 27 (ng/ml) 1.051 1.015–1.089 0.005*
Serum neuron specific enolase (ng/ml) 1.182 1.060–1.318 0.003* 1.200 1.002–1.438 0.048*

aOR; adjusted odds ratio, cOR; crude odds ratio CI; Confidence interval, LDL-C; low density lipoprotein cholesterol, MNSI; Michigan Neuropathy Screening 
Instrument, * Statistically significant at p ≤ 0.05, ** highly Statistically significant p < 0.001

Fig. 4 Receiver operating characteristic (ROC) curve for serum neuron specific enolase (NSE) and serum heat shock protein 27 (HSP 27) to discriminate 
neuropathic patients from non-neuropathic ones
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stress in patients with T1DM, suggesting that poor glyce-
mic control may be a potential modifiable risk factor for 
dyslipidemia [30, 33–35].

EURODIAB tracked adolescents and young adults 
with T1DM for eight years to identify incident DPN risk 
variables other than hyperglycemia. They found that 
increased levels of TC, LDL-C, TG, BMI, and hyperten-
sion were associated with DPN risk [36]. Additionally, 
a SEARCH study discovered that obesity, elevated TG, 
LDL-C, diastolic blood pressure, and decreased HDL-C 
were DPN risk factors [37]. In the same context, our 
results demonstrated a substantial relationship between 
elevated HbA1c levels and alterations in the lipid profile, 
with neuropathic patients showing significantly higher 
levels of TG, TC, and LDL-C, worse glycemic control, 
and a longer duration of disease than non-neuropathic 
patients. Furthermore, these variables showed significant 
correlations with the electrophysiological changes in the 
studied nerves, with some variations.

Nevertheless, others have reported that even with 
excellent metabolic control and a short disease duration, 
subclinical DPN has been detected in children with dia-
betes, indicating the possibility of genetic predisposition 
[3, 7, 38–40]. Additionally, wide variances in lipid pro-
file across different studies have been reported, which 
could be attributed to variations in demographic profiles, 
including dietary and lifestyle habits, as well as influ-
ences of pubertal development [10, 11, 35]. As a result, 
their role in DPN remains contradictory and inapplicable 
to broader demographics. Even so, it is indispensable to 
keep children and adolescents with T1DM under ade-
quate glycemic control and to monitor changes in their 
lipid profiles.

Biomarkers for diabetic neuropathy may arise from a 
variety of processes, such as degeneration of nerve fibers, 
damage to endothelial cells of neurotrophic blood vessels, 
and metabolic alterations that occur in peripheral nerve 
tissue under prolonged hyperglycemic conditions [41]. 
Serum NSE levels were found to be relatively elevated in 
diabetic adults and significantly elevated in those with 
diabetic neuropathy, and they may even be unaffected by 
age, diabetes type, disease duration, glycemic control, or 
the degree of neuropathy [15, 41–44]. Moreover, a recent 
study hypothesized that NSE might function as a predic-
tive indicator for DPN therapeutic outcomes [45]. Few 
studies have reported elevated NSE levels in children 
with diabetic ketoacidosis [46, 47]; however, to the best of 
our knowledge, no other studies have examined the rela-
tionship between NSE and DPN in children with type 1 
diabetes.

Heat shock proteins have been hypothesized to func-
tion as immunologic response modulators in type 1 dia-
betes, and their low expression may influence a number 
of diabetes-related pathological states and consequences 

[48]. Unfortunately, there is a dearth of contradic-
tory data regarding HSP27 and DPN. Gruden et al. [16] 
reported a correlation between high serum HSP27 levels 
and DPN in type 1 diabetes; however, other studies found 
no such correlation [49, 50].

Several studies reported that the sural AP amplitude 
and conduction velocity, as well as peroneal conduc-
tion velocity threshold values, were the most effective 
indicators of diabetic neuropathy [51–53]. In this con-
text, both NSE and HSP27 were significantly elevated in 
patients, and in relation to the studied electrophysiologi-
cal changes, elevated NSE levels were linked to notable 
decreases in sural nerve AP amplitude and extensions 
in sural distal latency, along with decreased conduction 
velocities of the sural, common peroneal, and posterior 
tibial nerves, regardless of whether these electrophysi-
ological changes remained within the normal range 
for age. On the other hand, elevated HSP27 levels were 
only correlated with the sural AP amplitude. Addition-
ally, both levels distinguished DPN well in ROC analy-
sis; however, serum NSE outperformed HSP27 in terms 
of sensitivity and specificity, suggesting that NSE is more 
relevant to DPN than HSP27.

From our findings, MNSI proved to be a sensitive and 
specific noninvasive clinical method for DPN screening. 
A longer disease duration, worse glycemic control, and 
significantly raised TC, TG, and LDL-C were all observed 
in neuropathic patients, with varying patterns of signifi-
cance in relation to electrophysiological parameters; still, 
there are no clear statements regarding their relevance 
to DPN. Furthermore, serum NSE and HSP27 were sig-
nificantly higher in patients than in controls, particularly 
in neuropathic patients. Despite poor data in pediatrics, 
NSE correlated better to electrophysiological changes 
than HSP27, showing superior sensitivity and specificity 
in DPN discrimination. In the same context, multivariate 
regression analysis revealed that MNSI and serum NSE 
were the only dependent predictors of DPN, surpassing 
disease duration, HbA1c, TG, LDL-C, and HSP27. This 
suggests that MNSI and serum NSE could be promising 
and valuable tools for evaluating DPN in children and 
adolescents with T1DM and may provide a trustworthy 
aid in clinical decision-making. Thus, we recommend 
carrying out further large-scale studies on them.

Points of strength
As far as we know, our study is the first to assess DPN 
in children and adolescents with T1DM combining both 
MNSI, HbA1c, lipid profile, HSP27, and NSE, all under 
the guidance of the gold standard NCS. Additionally, 
none of the enrolled patients had ever sought medical 
advice for DPN or undergone a previous NCS.
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Limitations
The comparatively small sample size of this study was 
one of its primary limitations. Our staff also faced chal-
lenges when many parents refused to have NCS for their 
children, either out of fear of the test or because of soci-
etal beliefs about DM or a lack of medical knowledge. 
Additionally, the MNSI questionnaire was translated into 
our country’s native language, and scores were recorded 
based on the answers in the native language, ensuring 
that they conformed to the original questionnaire lan-
guage; still, there is a risk of translation bias.

Conclusion
In children with type 1 diabetes, DPN is a growing issue 
that requires attention and the development of practi-
cal screening tools to support subsequent interventions. 
MNSI is a feasible clinical tool that easy to use by medi-
cal personnel, especially in resource-limited settings. 
In addition, serum NSE levels correlate well with elec-
trophysiological changes in DPN. Both tools show solid 
sensitivity and specificity in discriminating neuropathic 
patients according to our findings, underscoring their 
valuable role in this issue. Finally, even with the reported 
controversial data, it is crucial to follow up lipid profile in 
these children, especially with a longer duration of dis-
ease and poor glycemic control.
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