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Abstract
The treatment for inborn errors of liver metabolism is based on dietary, drug, and cell therapies
(orthotopic liver transplantation). However, significant morbidity and mortality still remain, and
alternative strategies are needed. Gene replacement therapy has the potential of providing a
definitive cure for patients with these diseases. Significant progress has been made in the pre-clinical
arena and achievement of efficacy in different animal models has been reported using multiple gene
transfer technologies. This article summarizes the gene transfer strategies being investigated, the
pre-clinical data, and the available early clinical results for inborn errors of liver metabolism.

Introduction
Significant advances in the diagnosis and treatment of
inborn errors of metabolism have occurred in recent
years. Expanded newborn screening using tandem mass
spectrometry has led to the ability to identify and treat
neonates who have metabolic conditions before symp-
toms appear [1]. Developments in nutritional support
and pharmacological treatments with vitamin cofactors,
end-product replacement, and drugs inducing specific
enzymes or alternative pathways have also led to better
outcomes. Cell therapy, primarily orthotopic liver trans-
plantation (OLT), has significantly changed the prognosis
of some of these diseases. Patients undergoing solid organ
transplantation have benefited from innovative surgical
techniques and novel, less toxic nonsteroidal immuno-
suppressive regimens. However, pharmacological treat-
ments are often insufficient in the face of the activation of
catabolic states, many patients succumb while waiting for
a donor organ (approximately 15%), and short-term peri-
transplant morbidity and long-term morbidity associated
with lifelong immunosuppression continue to be signifi-
cant issues [2-5]. Therefore, a risk/benefit assessment

could make gene therapy an acceptable option for several
inborn errors of metabolism.

Progress in the direction of clinical application of gene
replacement therapy has been scarce so far despite exten-
sive investigations for over 20 years. A general skepticism
toward gene therapy was raised by the death of one
patient in the ornithine transcarbamylase deficiency
(OTCD) clinical trial [6] and by the recent report of leuke-
mia occurred in few patients with severe combined immu-
nodeficiencies (SCID) treated with retroviral ex vivo gene
therapy [7]. However, with regard to the SCID trial, it is
important to emphasize that despite the adverse events, it
clearly demonstrated the benefits of gene therapy as
treated patients can now cope with environmental micro-
organisms and live a normal life in the absence of any spe-
cific therapy [8].

Several different types of vectors, both viral and nonviral,
have been developed for liver-directed gene therapy and
have resulted in phenotypic correction in numerous ani-
mal disease models. The optimal vector for in vivo liver-

Published: 18 November 2008

Italian Journal of Pediatrics 2008, 34:2 doi:10.1186/1824-7288-34-2

Received: 7 October 2008
Accepted: 18 November 2008

This article is available from: http://www.ijponline.net/content/34/1/2

© 2008 Brunetti-Pierri; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 6
(page number not for citation purposes)

http://www.ijponline.net/content/34/1/2
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Italian Journal of Pediatrics 2008, 34:2 http://www.ijponline.net/content/34/1/2
directed gene therapy should be able to transfer genes to a
high percentage of hepatocytes with limited toxicity.
However, the available vectors have all shown some limi-
tations (Table 1). In aiming at the treatment of liver met-
abolic diseases an important issue is how much of the
liver needs to be corrected (i.e. percentage of hepatocyte)
to achieve clinically relevant improvements. The percent-
age of hepatocyte transduction required for phenotypic
correction is generally low in non-cell autonomous disor-
ders such as hemophilia A and B or mucopolysacchari-
doses and higher in cell autonomous defects such as urea
cycle disorders. As a general principle, maximizing thera-
peutic gene expression per cell and minimizing the vector
dose for a clinical effect are desirable. However, the poten-
tial adverse effects of over-expression of the therapeutic
protein should also be taken into account.

Vectors for liver directed gene therapy
The number of different vectors that are under develop-
ment for liver-directed gene therapy is continuously
increasing. However, five main classes of vectors have
been more extensively investigated and each of these
classes is characterized by different strengths and weak-
nesses (Table 1).

Retrovirus
Retroviral vectors (RV) were the first vectors used for gene
therapy. They can efficiently integrate into the chromatin
of target cells. However, they require the target cells to be
mitotically active for an efficient transduction. Therefore,
induction of liver division or liver regeneration through
manipulations such as partial hepatectomy or hapatocyte
growth factor treatment have been required for efficient
hepatocyte transduction [9-11]. More recently, it has been
shown that RV can transduce hepatocytes from newborn
mice [12] and dogs [13] without an exogenous stimula-
tion of cell division. However, as shown by the SCID trial
experience, the risk of insertional mutagenesis is still a
major consideration for RV.

Lentivirus
Lentivirus vectors (LV) offer similar advantages to the RV,
in that they mediate long-term integration of the thera-
peutic transgene, but unlike RV, they do not require cellu-
lar mitosis to gain access to the host genome for
integration. They also are thought to share the potential
for insertional mutagenesis with subsequent carcinogene-
sis, although this has not been observed yet in animal
models. Following systemic LV delivery, the majority of
transduced liver cells are of nonparenchymal origin and

Table 1: Overview of gene therapy vectors.

Genetic material Packaging capacity Vector genome forms Advantages Disadvantages

Retrovirus RNA 8 kb Integrated - High efficiency 
integration

- Transduction only in 
dividing cells

- No viral immune 
response

- Insertional 
carcinogenesis

- Long-term expression
Lentivirus RNA 8 kb Integrated - Non-dividing cells - Integration into active 

genes
- Long-term expression - Risk of replication 

competent HIV
Adenovirus dsDNA Up to 35 kb (HDAd) Episomal - Non-dividing cells - Acute toxicity

- Large cloning capacity
- High transduction 
levels
- Long-term expression 
(HDAd)

Adeno-associated 
vectors

ssDNA 5–9 kb Episomal (> 90%) - Non-dividing cells - Limited cloning capacity

Integrated (< 10%) - Long-term expression - CTL-mediated immune 
reaction

Naked plasmid DNA dsDNA Unlimited Episomal - Non dividing cells - Low efficiency of 
transduction

- No inflammatory 
response

- Efficient and clinically 
relevant delivery method 
still to be developed

- Large cloning capacity
- Long-term expression
- Ease preparation

dsDNA = double stranded DNA; ssDNA = single stranded DNA; HDAd = helper-dependent adenoviral vector; CTL = cytotoxic T lymphocyte.
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therefore, the efficiency of hepatocyte transduction is rel-
atively low.

Adenovirus
Adenovirus (Ad) vectors are well suited for liver-directed
gene therapy because they can transduce hepatocytes with
high efficiency. When tested in vivo, first generation of Ad
(FGAd) vectors, which are replication-defective but can
still express viral genes at low levels, cause acute and
chronic toxicity. Helper-dependent adenoviral (HDAd)
vectors, which are devoid of all viral genes, offer a better
safety profile and can provide long-term transgene expres-
sion with negligible chronic toxicity [14]. Several preclin-
ical studies have shown that HDAd results in long-term
phenotypic correction in several genetic diseases [14].
However, similar to FGAd they can still cause an acute
toxic reaction due to activation of the host innate immune
system when they are administered at high dose systemi-
cally [15]. A clinical trial for OTCD using an early genera-
tion Ad vector bearing the human OTC gene was
interrupted when the second subject at the highest dose
suffered fatal complications. The trial involved 18 subjects
divided into 6 cohorts of 1/2 log dose escalations between
cohorts until two subjects were enrolled at the highest
dose [16]. As predicted from preclinical models, clinical
findings were mild and transient in the initial 17 patients
[16]. However, unlike the previous subjects, the last
patient enrolled developed within 24 hours after vector
infusion a lethal reaction characterized by acute respira-
tory distress syndrome, hepatitis, disseminated intravas-
cular coagulopathy, hyperammonemia, and high levels of
serum IL-6 [6]. Several mechanisms have been proposed
to be responsible for the activation of this acute response
[17]. However, regardless of the multiple mechanisms
involved, systemic administration of Ad results in an
acute toxic reaction which is triggered by the Ad capsid
proteins in a dose-dependent fashion [15]. This acute tox-
icity is currently the main obstacle preventing clinical
application of HDAd and strategies to overcome this
problem are currently under investigation [18-20].

Adeno-associated virus (AAV)
AAV vectors are derived from a non-pathogenic human
parvovirus that can infect non-dividing cells and remains
latent for prolonged periods, predominantly in an episo-
mal state. AAV vectors appear to persist in infected cells
and do not trigger a robust innate response following in
vivo administration. A wide repertoire of different AAV
serotypes with different tissue tropisms is now available
for several disease applications [21]. AAV vectors have a
limited packaging capacity which precludes applications
in diseases requiring large therapeutic genes. However,
novel AAV serotypes with larger cloning capacity are
emerging and they may at least in part overcome this
problem [22]. In the clinical study for liver-directed gene

therapy of hemophilia B, a recombinant AAV vector
expressing human Factor IX (FIX) was infused through the
hepatic artery in subjects with severe hemophilia B in an
open label, dose-escalation study. Two subjects in the
higher dose cohorts achieved measurable FIX levels at 2
weeks after vector infusion but, in contrast to the results
generated in animal models, they exhibited a gradual
decline in factor levels to < 1% by 10 weeks after vector
infusion. This was accompanied in both subjects by an
asymptomatic transaminase elevation beginning 4 weeks
after vector infusion, with a gradual decline to baseline
normal levels coinciding with the loss of FIX expression
[23]. This reaction is due to the rejection of transduced
hepatocytes by AAV capsid-specific memory CD8(+) T
cells reactivated by AAV [24] and intense investigations
are currently ongoing to overcome this problem. Another
problem of the AAV vectors is as yet theoretical risk of
insertional mutagenesis in humans. Studies in mice sug-
gest that AAV vectors are predominantly nonintegrating
[25], and a wealth of experience in the field had failed to
uncover any evidence of tumor formation as a result of
AAV transduction, except for a mouse disease model of
mucopolysaccharidosis type VII [26]. A recent study has
reported that, in the tumor tissue, the vector appeared to
have integrated in a region rich in microRNA sequences
on mouse chromosome 12 [27]. On the other hand, fol-
low-up periods ranging up to 9 years in several hemo-
philic dogs have failed to reveal any evidence of tumor
formation [28].

Nonviral vectors
Nonviral vectors offer a number of advantages over viral-
based strategies, including minimal toxicity from the vec-
tor, long-term transgene expression, lack of a humoral
response against the vector, and the consequent ability to
repeat dose [29]. A major advance in the field has been the
development of the hydrodynamic injection technique
which involves, in mice, the rapid injection of a large vol-
ume of naked plasmid DNA (pDNA) and typically results
in 10–15% of hepatocyte transfection [30,31]. Systemic
hydrodynamic procedure as practiced in the rodents is
neither safe nor practical in larger animals or humans.
However, clinically relevant methods using balloon cath-
eters for regional hydrodynamic delivery of pDNA have
been developed [32,33]. These studies demonstrate the
feasibility of intravascular delivery to the liver using min-
imally invasive approaches, and are a step in the direction
of human clinical trials.

Pre-clinical and clinical studies
Experimental gene therapy has been used to correct sev-
eral metabolic diseases. We will discuss two diseases (Cri-
gler-Najjar syndrome type I and OTCD) as representative
examples to illustrate the potential and the limitations of
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currently available strategies for liver-directed gene ther-
apy.

Crigler-Najjar syndrome
Crigler-Najjar syndrome is an autosomal recessive condi-
tion characterized by non-hemolytic unconjugated hyper-
bilirubinaemia due to mutations bilirubin-
uridinediphosphoglucuronate glucuronosyltransferase
(UGT1A1). Patients with Crigler-Najjar syndrome type I
(MIM 218800) are refractory to phenobarbital treatment,
have life-threatening elevations of bilirubin, and are gen-
erally managed with phototherapy throughout childhood
and adolescence. Although effective, phototherapy is
cumbersome, inconvenient, and its efficacy may diminish
with age because of increased skin thickness and
decreased surface/mass ratio. Moreover, despite this treat-
ment, patients remain at risk of brain damage when inter-
current infections may increase production of bilirubin
above that which can be controlled by the phototherapy
[34]. Therefore, patients with Crigler-Najjar type I are
often advised to consider liver transplantation, most fre-
quently in the range of 18 – 25 years of age. Crigler-Najjar
syndrome has long been considered a paradigm for devel-
oping gene therapies for metabolic liver diseases for sev-
eral reasons: (a) the underlying defect is well characterized
at the biochemical and molecular level; (b) the fraction of
corrected hepatocytes required for clinical benefit is small,
as deduced from hepatocyte transplantation studies [35];
(c) the UGT1A1 does not require strict gene regulation for
normal activity; (d) an animal model, the Gunn rat, reca-
pitulating the human disease is available; (e) the outcome
of the experimental therapies can be easily determined by
measuring bilirubin fractions in serum and bile; (f) the
UGT1A1 can be produced from skeletal muscle other than
liver, its natural production site, and still retain the ability
to transform bilirubin into water-soluble derivatives [36].
For these several reasons, Crigler-Najjar syndrome type I is
very attractive as a gene therapy disease candidate and its
correction has been the goal of several studies using differ-
ent vector systems including RV, LV, Ad, AAV, and nonvi-
ral vectors. RV expressing UGT1A1 injected in newborns
[37] or in conjunction with partial hepatectomy [38] have
achieved long-term correction of the hyperbilirubinemia
in the Gunn rats. As previously discussed, LV can also
transduce nonproliferating cells and, in the Gunn rats,
they resulted in stable reduction of bilirubin levels to near
normal levels for over 1 year after treatment [39]. Impres-
sive lifelong correction of hyperbilirubinemia has been
also reported in the Gunn rats following a single intrave-
nous injection of HDAd vector encoding UGT1A1 with
negligible chronic toxicity [40]. Among different sero-
types, AAV serotype 1 was found to be the most efficient
in correcting the hyperbilirubinemia of the Gunn rats
although large hepatic macroscopic lipid lesions of
unclear etiology were found in AAV-treated animals [41].

A reduction of hyperbilirubinemia has also been reported
following hydrodynamic injection of pDNA [42]. How-
ever, as discussed in previous sections, each of the vectors
used in this disease model has some limitations which are
currently preventing clinical applications.

Urea cycle disorders
Urea cycle disorders typically present in the first few days
after birth with poor feeding, vomiting, lethargy, and
coma due to hyperammonemia. Despite aggressive phar-
macotherapy, patients are at high risk for repeated epi-
sodes of hyperammonemia and cumulative neurological
morbidity and mortality [43,44]. Given these significant
problems, gene-replacement therapy could represent a
viable alternative to OLT for long-term correction. Several
studies over the past decade have found the therapeutic
effect of several different FGAd vectors to be transient in
the OTCD mouse models and lasting no longer than 2
months [45]. HDAd instead can mediate long-term cor-
rection of the OTCD animal model without chronic toxic-
ity [46,47]. The novel AAV serotypes (AAV7, 8, 9), with
higher efficiency of hepatocyte transduction, have also
resulted in long-term phenotypic correction [48]. The
application of LV and nonviral vectors for OTCD has not
been reported to date and these vectors are likely to be
inefficient in these diseases due to the high percentage of
hepatocyte correction required.

Conclusion
Gene therapy for liver metabolic diseases as an alternative
or adjunctive treatment to cell therapy is a logical target
given the problems with the available treatment modali-
ties. Disorders such as Crigler-Najjar syndrome and urea
cycle disorders are excellent candidates because of their
poor prognosis. However, each of the available vector
transfer technologies offers strengths and weaknesses.
Integrating vectors such as LV and RV may be associated
with long-term risk of genotoxicity and potential life long
correction; AAV have a lower risk regarding integration,
but are limited by cloning capacity and potential adaptive
immune response to viral antigens. HDAd are associated
with a dose-related innate immune response but offers
efficient transduction without risk of genome integration.
None of these obstacles are conceptually immovable and
novel strategies need to be investigated to improve the
safety profile of these vectors. Based on the significant
progress to date, in spite of the expected setbacks of all
drug development efforts, gene therapy for liver metabolic
disorders may soon become a clinical reality.
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