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the diagnosis and treatment of GHD.

needs to be addressed.
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Growth hormone deficiency (GHD) is a relatively uncommon and heterogeneous endocrine disorder presenting in
childhood with short stature. However, during the neonatal period, the metabolic effects of GHD may to require
prompt replacement therapy to avoid possible life-threatening complications. An increasing amount of data suggests the
importance of an early diagnosis and treatment of GHD because of its auxological, metabolic, and neurodevelopmental
features with respect to the patients diagnosed and treated later in life.

The available results show favourable auxological outcomes for patients with GHD diagnosed and treated with r-hGH
early in life compared with those from patients with GHD who do not receive this early diagnosis and treatment. Because
delayed referral for GHD diagnosis and treatment is still frequent, these results highlight the need for more attention in

Despite these very encouraging data regarding metabolic and neurodevelopmental features, further studies are
needed to better characterize these findings. Overall, the importance of early diagnosis and treatment of GHD
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Background

Growth hormone deficiency (GHD) is a relatively un-
common and heterogeneous disorder, in terms of aeti-
ology, pathogenesis, age of diagnosis, and the cause of
growth retardation and short stature [1]. The prevalence
of GHD in childhood widely varies between 1/3480 and
1/30,000 children [2], even if the milder phenotype has a
frequency of nearly 1:2000 [3].

In children, the main manifestation of GHD is repre-
sented by growth failure [1], and growth hormone (GH)
ameliorates the short- and long-term height prognosis in
these patients [4]. However, in children, GH may influ-
ence bone mineralization and bring about a large num-
ber of metabolic effects, involving lipid and glucose
homeostasis and lean and fat mass [5].
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The long-term growth response to GH treatment in
GHD children may be conditioned by both pre-treatment
and treatment-related factors, such as birth weight, base-
line height standard deviation score (SDS), age at the onset
of treatment, height at the start of puberty, treatment dur-
ation, target height (TH), mean frequency of injections,
and doses of GH [6-8]. However, in a small subset of pa-
tients, GHD is recognizable in infancy or early childhood
(ie., < 3 years of age), and some data suggest that an early
GHD diagnosis and a concomitant early start of treatment
have proven effective in normalizing height [8—18].

It appears to be of great concern to consider early
diagnosis and treatment as an advantageous and cost-
effective strategy in achieving height improvement and a
normal growth pattern during childhood compared with
delayed start of treatment [19]. Additionally, the psycho-
logical benefits are greater, and the improvement in cost
effectiveness is vast [9]. On the whole, published data
suggest that the early diagnosis and treatment of GHD
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may have metabolic and neurodevelopmental conse-
quences in childhood and adulthood [20].

In this review, we retrospectively evaluate data regard-
ing early GHD diagnosis and treatment with r-hGH,
examining their auxological, metabolic, and neurodeve-
lopmental features with a focus on patients who have
been diagnosed and treated later in life. For this study,
relevant papers published in English were identified
through systematic searches of the PubMed, EMBASE
and Cochrane databases. Keywords in the literature
search were entered in all combinations. Searches were
augmented by manually reviewing the reference lists of
all original articles and all systematic review articles,
with each study being evaluated for inclusion.

GH actions in the growth plate

The growth plate is a thin layer of cartilage localized be-
tween the epiphyseal and metaphyseal bone at the ends
of the long bones. Longitudinal bone growth occurs at
the growth plate by endochondral ossification, a process
in which cartilage is first formed and then remoulded
into bone tissue in a determined temporal and spatial
organization. The growth plate consists of three princi-
pal layers: the germinal zone, proliferative zone, and
hypertrophic zone [21]. At the epiphyseal end of the
growth plate, the germinal zone contains the resting
progenitors (stem cells), which differentiate into chon-
drocytes and progress through the proliferative zone. In
this matrix-rich setting, the chondrocytes undergo cell
divisions and arrange in columns that parallel the longi-
tudinal axis of the bone. Immediately after proliferating,
chondrocytes lose their capacity to divide and start to
differentiate into prehypertrophic chondrocytes, increas-
ing in size at same time [22]. They then further undergo
terminal differentiation into hypertrophic chondrocytes,
which have a round appearance and secrete large
amounts of matrix proteins [23, 24]. The mineralization
process, in combination with low oxygen tension, deter-
mines the changes in the environment that allow vascu-
lar invasion from the marrow of the metaphysis, thereby
enabling the recruitment of osteoclasts and differentiat-
ing osteoblasts that remodel the newly formed cartilage
into bone tissue [25, 26]. Subsequently, the mineralized
chondrocytes undergo programmed apoptosis, leaving a
platform for new bone formation. The final effect is that
new bone tissue is progressively created at the bottom of
the growth plate, resulting in bone elongation. During
puberty and its associated rapid growth, the processes of
cellular addition and replacement are coupled so that
the width of the growth plate remains constant [27],
while at the end of the growth period, the growth plate
narrows and finally disappears as a result of systemic
control and the fusion of the epiphysis with the meta-
physis. However, it is now believed that regulation is
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intrinsic to the growth plate and that growth plate fusion
may not precede, but rather follow, the cessation of
growth [28, 29].

In children, maintenance of growth is a complex
process that is regulated by a multitude of genetic, hor-
monal, environmental and nutritional factors [30, 31].
The major systemic hormones that regulate longitudinal
bone growth during childhood are GH and insulin-like
growth factor 1 (IGF-I), thyroid hormone (T3 and T,),
glucocorticoids, and during puberty, sex steroids (andro-
gens and oestrogens) [32, 33]. However, two of the most
important regulators of postnatal bone growth are GH
and IGF-1.

Growth hormone and IGF-I are potent stimulators of
longitudinal bone growth [34]. Pituitary adenoma in
childhood or adulthood causes excessive GH secretion,
leading to gigantism or acromegaly, respectively [35, 36].
Conversely, GH deficiency or insensitivity due to GH-
receptor mutations or defects in GH signalling pathways
or in the formation of GH-secretory cells all result in se-
vere dwarfism [37-42]. Data on patients with untreated
isolated GH deficiency suggest that it leads to an average
final height SDS of —4.7 (-6.1 to -3.9), [43].

In the early 1950s, Salmon and Daughaday described
the somatomedin hypothesis. They proposed that the ef-
fects of GH on bone longitudinal growth were indirect
and mediated by liver-derived IGF-I [44, 45], which acti-
vates chondrocyte proliferation in the growth plate.
However, further studies have led researchers to recon-
sider this theory, since it was also demonstrated that GH
can directly stimulate linear bone growth by local action
on the growth plate. Isaksson et al. found that local GH
injection into the tibial bone significantly stimulates lon-
gitudinal growth, whereas the contralateral tibia did not
show this increase [46]. Studies in rats demonstrated
pronounced tibial bone growth in the GH- or IGF-I-
injected growth plate compared with the contralateral
vehicle-injected growth plate [47, 48]. Furthermore, local
injection of GH regulates the number of chondrocytes
expressing IGF-I in rats, suggesting that part of the local
action of GH on the growth plate may be mediated by
increased local production of IGF-I [49]. Those observa-
tions led to the dual effector theory of GH/IGF-1 action
at the growth plate, which states that GH acts directly
on the germinal zone precursors of the growth plate to
stimulate the differentiation of chondrocytes and then
amplify local IGF-1 synthesis, which in turn induces the
clonal expansion of chondrocyte columns in an auto-
crine/paracrine manner [50-53]. In support of the dual-
effector theory but also suggesting a direct role of IGF-I
on the growth plate, there are studies on mice with an
inactivated GHR gene and studies on double knockout
mice for GHR and IGF-I. The GHR/IGF-I double mu-
tants were smaller than either the GHR or IGF-I single
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mutants, suggesting that both GH and IGF-I play a key
role in the complex mechanism that leads to longitu-
dinal growth [54].

Metabolic actions of GH

The first reports on significant changes in body compos-
ition in child hypopituitary dwarfs were reported over
40 years ago [55, 56]. Afterwards, if we focus on the effect
of GHD on body composition, several studies have con-
firmed its association with an increase in body fat and de-
creased lean body mass (LBM) in children [57-60].
Treatment with r-hGH results in an early normalization
of body fat percentage within 6 months (58) and a steady
increase in LBM during a 2- to 6-year treatment period
[57, 60], while after a 6-month discontinuation of therapy,
a rapid change in body composition can be already
assessed in adult GHD, with an increased amount of fat
mass and a decrease in LBM [61]. In particular, GHD
adults display disproportionate increases in central ab-
dominal fat. In a study conducted on adolescents with
GHD at 6 and 12 months after discontinuation of r-hGH
therapy, the authors registered no change in LBM [62].
These data appear to be in contrast with those on adults,
but at the end of the study, although linear growth was
virtually complete, full body compositional maturation
had not occurred yet. It is therefore indicated that GH
cessation was associated with a static LBM, while the
group receiving GH had a continuing accrual of LMB.
Using a CT scan, Rutherford et al. [63] demonstrated that
when r-hGH was stopped for 12 months in adolescents
treated for isolated GHD, body fat and muscle size in-
creased, while integrity and strength decreased. These pa-
tients have increased levels of total and LDL cholesterol
[64] and a higher prevalence of impaired glucose tolerance
[65]. Additionally, they have been found to have a greater
prevalence of atheromatous plaques in the carotid and
femoral vessels [66] and a two-fold increase in cardiovas-
cular mortality [67]. It is well known that GH has signifi-
cant effects on fat, glucose and protein metabolism. A
number of studies have shown that GH increases lipolysis
and fat oxidation, reduces glucose oxidation and impairs
insulin action [68-70]. GH lowers protein oxidation and
stimulates protein synthesis. It is likely that the protein-
sparing effect of GH, together with its effects on stimulat-
ing protein synthesis, contribute to the increase in LMB
during treatment [71, 72]. However, in acromegaly, energy
metabolism is characterized by a trend towards higher
carbohydrate oxidation in the basal state and a greater rate
of carbohydrate oxidation following oral glucose [73]. The
findings of increased carbohydrate oxidation and de-
creased lipid oxidation are the opposite of those observed
after short-term GH administration. IGF-I, but not glu-
cose and/or insulin, was significantly related to basal and
post-glucose carbohydrate oxidation. Studies with
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recombinant IGF-I in men have shown that this growth
factor stimulates glucose disposal and increases carbohy-
drate oxidation [74]. Lewitt et al. have provided strong evi-
dence in vivo that IGF-I and its related binding proteins
play a significant role in glucose homeostasis [75].

GH effects on neurodevelopment

In humans, growth hormone binding sites, indicative of
GH receptor (GH-R) expression, are located on neurons,
astrocytes, oligodendrocytes and microglia, and IGF-I
was found to stimulate neuron growth, dendritic arbor-
isation and synaptogenesis [76, 77]. In particular, GH-Rs
were demonstrated in their highest concentration in the
choroid plexus, thalamus, hypothalamus, pituitary, puta-
men and hippocampus [77], while IGF-I receptors are
highly expressed in the hippocampus, amygdala, caudate
nucleus, prefrontal cortex and parahippocampal cortex
[76, 78]. There is also evidence that both GH and IGF-I
are transported across the blood-brain barrier via trans-
cytosis [79]. In addition, GH mRNA can be found in the
central nervous system (CNS), suggesting that GH also
acts in an autocrine/paracrine manner [80]. Interestingly,
a reduction in GH binding sites within the brain has
been observed with increasing age [77, 81]. Moreover,
amongst elderly subjects, those with higher concentra-
tions of IGF-I have been demonstrated to perform better
on cognitive function tests and have lower rates of cog-
nitive decline, suggesting that the GH-IGF-I axis affects
cognitive performance throughout life [82].

The somatotropic axis plays a central role in the devel-
opment and growth of the CNS. IGF-I intraventricular
infusion in rats improves cognitive performance, and the
inhibition of IGF-I binding to its receptors has been
shown to lead to cognitive impairment, particularly in
learning and reference memory [83]. Foetal cord IGF-I
and IGF-binding protein-3 (IGFBP-3) concentrations
have been related to head circumference at birth [84],
and children with growth hormone receptor mutations
have varying cognitive phenotypes [85, 86]. Similarly,
serum IGF-I concentrations correlate positively with ver-
bal intelligence in childhood [87].

In addition, there are several studies assessing a neuro-
protective role of GH and IGF-], either in combination
or alone. For instance, after spinal cord injury, a de-
creased production of GH and IGF-I can be found [88],
and in studies in rats with hypoxic brain damage, Shee-
pens et al. [89], found augmented immunoreactivity for
GH in areas with strong cell loss. After intraventricular
application of GH, the amount of neuronal loss was re-
duced in the frontoparietal cortex, hippocampus and
dorsolateral thalamus but was left unchanged in the stri-
atum, reflecting the regional distribution of GH recep-
tors mentioned above, suggesting that these particular
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neuroprotective effects are mediated directly by GH
alone.

Given these previous findings, it is unsurprising that
several neuropsychological studies have documented
impairments in cognitive functioning (memory and at-
tention) in GHD. Despite a normal intelligence quo-
tient (IQ), short children often show educational
impairment, particularly in the domain of reading,
spelling and arithmetic, and children with GHD show
learning and attention deficits [90] and disturbances
in visual-motor integration [91]. An impaired social
status in patients with childhood-onset GHD has been
reported compared with short and normal controls
[92, 93], and women with untreated GHD exhibited
lower scores on neuropsychological tests than healthy
controls [94]. In a meta-analysis on adults with child-
hood- or adult-onset GHD, Falletti et al. demon-
strated a link between GH and cognitive performance,
which improved in GHD patients when growth hor-
mone was replaced [95].

The effects of growth hormone substitution were also
studied by Deijen et al, who evaluated the effects of
three different doses of GH (1, 2, and 3 IU/m2/day)
compared with a placebo treatment over six months,
and then in an open-label phase over 18 months. In the
first six months, they found improvements in memory
function compared with placebo only in the groups with
high GH doses, leading to supranormal IGF-I levels. In
the next 18 months (open-label phase), they found im-
provements in memory functions at all doses [96]. This
study confirmed the positive findings of GH substitution
on cognitive abilities in previously conducted studies
with small patient numbers [97, 98]. More recently,
Webb EA et al. [99], evaluated the effect of GHD on
brain structure and cognition in 15 children (mean age
8.8 years) compared to a group of children with idio-
pathic short stature. Compared with controls, children
with isolated GHD had lower IQ, particularly in the area
of verbal comprehension, which is correlated with IGF-I
levels, and motor function, thus highlighting the link be-
tween GH and cognitive performance. Therefore, poor
performance can be ameliorated with GH treatment.

Early diagnosis and treatment of GHD

Although most children with clinical evidence of congeni-
tal GHD are diagnosed in the first months or years of life,
some are recognized relatively late in childhood, at a time
when short stature becomes clearly evident. In contrast,
there is a subset of patients whose GHD is recognized be-
fore 3 years of age. In these patients, short-term and long-
term studies have shown a marked early catch-up growth
and a significant amelioration of height with an early start
of r-hGH treatment [19]. However, data on the metabolic
and neurodevelopmental differences in these two cohorts
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(early and late diagnosis of GHD and treatment) are very
poor [20].

Auxological outcomes of early GH treatment

In the past, reports have suggested that early diagnosis
and treatment of GHD patients lead to a greater im-
provement in height gained, even if the final height
remained near 2 SD below the mean population [100-
106]. However, in 1995, Boersma et al. evaluated 26
children (7 with isolated GHD and 19 with GHD in
combination with other pituitary deficiencies) who had
started GH treatment before the age of 3 years and
reported that early treatment of GHD may to lead to
adequate catch-up growth, stressing that the early diag-
nosis and treatment before the statural impairment be-
came evident was essential [14]. In the same paper,
Boersma et al. reported how height SDS correlated
positively with injection frequency and height SD score
at start of treatment, noting that past treatment regi-
mens, for example, 2 or 4 injections per week, could be
responsible for failure to complete height gain [14]. In
contrast, in children treated with 6 or 7 injections per
week, the initial height at the start of treatment was re-
ported to be crucial, since those with an initial height
SDS between -2 and -4 showed a remarkable catch-up
growth, whereas children with an initial height SDS < -4
did not reach full catch-up growth, although the study
follow-up was only 4 years [14].

At the same time, Arrigo et al. studied 23 patients with
early-onset GHD, 8 of whom had multiple hypophyseal
deficiencies; these patients were treated before 5 years of
age with GH and followed up for more than 3 years
[15]. The data clearly showed that the height SDS at the
end of the study was significantly better than in prior
GH treatments, and the predicted height did not differ
from the target height [15]. However, in the 6 (26%) pa-
tients showing a height < -2 SDS at the end of the study,
only 2 showed a height > —4 SDS prior to GH treatment.
Conversely, many patients showed a considerable height
gain during the study (for example, in patient 1 and 4,
the Aheight gain was 6.8 and 6.7 SDS, respectively) [15],
not completely confirming the hypothesis of Boersma et
al. [14]. It is interesting to note that the authors adjusted
the GH doses periodically (every 3 months) during the
first years of life [15]. These data were confirmed by an-
other study, involving 23 patients with GHD treatment
starting before the age of 5 and extending for at least
9 years until adulthood. These patients attained an adult
mean height that did not differ from the midparental
height (-0.9 vs. -0.7 SDS), because only three patients
failed to achieve a final height within the target range
[16]. It is meaningful to note that their height outcome
correlated negatively with chronological age at the initi-
ation of GH treatment and positively with height at
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puberty onset [16], stressing the importance of early
diagnosis for both reduced height loss at the beginning
of GH treatment and height prognosis at the onset of
puberty, which should always be considered in negative
terms in relation to stature recovery. However, other
data come from 49 French patients with GHD [10], who
started GH treatment before 1 year of age and were
treated for a mean of 8.0 + 3.6 years, reaching a mean
height of -0.4 SDS with a Aheight gain of 3.11 + 2.06
SDS (exceeding 4 SDS in 19 patients). The authors re-
ported that the catch-up growth was maximal during
the first 3 years and during puberty. Even if the patients
showed an acceptable growth spurt, no further catch-up
growth was reported for patients who reached or
exceeded their target size [10].

Furthermore, in a large prospective long-term study
evaluating 19 children with isolated GHD and 30 chil-
dren with multiple pituitary hormone deficiency treated
before the age of 3 years with daily subcutaneous injec-
tions for 3-5 years, the authors demonstrated that 84%
of the treated patients reached a height above 2 SDS
below the mean after 5 years of treatment [17]. These
patients were divided into two groups according to their
height SDS for chronological height at the start of GH
treatment: group A consisted of patients with an initial
height within the -2 SDS, whereas group B consisted of
patients with initial growth retardation (> -2 SDS) [17].
Both group A (the mean height significantly improved
by -2.1 + 0.6 at the start of GH treatment to 0.5 + 0.8
after 5 years) and B (from - 3.6 + 1.0 at the start of the
GH treatment to 0.9 + 1.2 after 5 years) showed a sig-
nificant change in annual mean height SDS for chrono-
logical age during treatment until the fourth year of
treatment (the fifth year was not evaluated due to the
small number of patients) [17]. However, the evaluation
of variables that could predict the total height gain after
5 years of treatment showed that only the height SDS at
the start of therapy was significant, indicating that most
infants with growth retardation had better catch-up
growth [17]. These data strongly supported the need to
start early GH treatment in GHD, before growth retard-
ation becomes evident [17].

These results were also confirmed by other studies
involving patients treated before the age of 2 [8, 18].
In particular, the authors discussed pre-treatment fac-
tors possibly affecting the catch-up growth during
GH treatment in GHD children, such as mid-parental
height and severity of GHD [107], pre-treatment
height and bone age (BA) delay at treatment onset
[108]. Interestingly, in a homogeneous population,
Wasniewska et al. reported that height gain during
this 7-year lasting study appears to be related to the
difference between target height (TH) and pre-
treatment height and BW [8].
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Interestingly, Ranke et al. evaluated 265 children with
idiopathic GHD treated before the age of 3, compared
with 509 children treated after 7 years of age, and showed
that after the first year of GH treatment, the height gain
was significantly higher per GH dose unit in very young
than in older children. The author suggested that the early
detection and treatment of GHD is a cost-effective strat-
egy and results in greater improvements in height and
growth velocity compared to a delayed treatment start in
childhood [9].

Finally, in another recent study involving 47 GHD pa-
tients, in whom the administration of r-hGH was started
at or before the age of 2 and consequently followed up
to near-adult heights (NAH), the authors reported that
treatment was very effective, since at the beginning of
the study, and the height was -2.3 SDS, whereas after 5
and 10 years of age and at NAH, the stature reached
-0.6, -0.3, and -0.4 SDS, respectively, which was com-
parable to the TH [12]. Importantly, the authors showed
that a normal pattern of linear growth was achieved dur-
ing childhood (before the age of 10) and that no add-
itional gain in NAH SDS was realized during puberty,
consistent with the statement that sensitivity to GH is
greater during childhood and that therapeutic efforts to
maximize height should be concentrated in the pre-
pubertal years [12].

Metabolic outcomes

Despite the absence of overt abnormal findings at base-
line, it is suggested that GHD children, even at a young
age, may show subtle metabolic changes that may ad-
versely affect their future metabolic and atherogenic
profile.

In these respects, the available data are mainly derived
from findings in patients with Prader-Willi syndrome
(PWS), a genetic condition frequently presenting hypo-
thalamic dysfunctions responsible for GH and thyroid-
stimulating hormone (TSH) deficiencies, central adrenal
insufficiency and hypogonadism [109]. It has been dem-
onstrated that the PWS patients receiving early r-hGH
treatment (begun prior to the age of 2) show improve-
ments in body composition, motor function, height, and
lipid profiles compared to those who were untreated
[110]. However, in PWS, early r-hGH treatment seems
to be unrelated to a significant increase in fasting insulin
and HOMA-IR [111].

These results seem to be confirmed in subjects with
GHD and optic nerve hypoplasia who had enrolled in
studies around 30 months of age and had undergone
early treatment with r-hGH. These subjects showed a re-
duction in body fat percentage and an improvement in
lipid levels compared to untreated controls [112]. How-
ever, longitudinal studies involving more cases, especially
patients with isolated GHD, are needed.
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Interestingly, data derived by studies conducted in
GHD dwarf rats have suggested that untreated early-
onset GHD may to lead to significant impairment of left
ventricular (LV) diastolic function and reductions in car-
diac size by adulthood. In this model, early GH substitu-
tion increased and sustained the cardiac concentration
of sarco/endoplasmic reticulum Ca**-ATPase (SERCA2)
and preserved cardiac morphology, limiting the onset of
overt diastolic dysfunction [113].

However, it remains to be established whether the pre-
viously discussed issues may place patients at higher risk
for cardiovascular disease later in life or reverse the
long-term effects of r-hGH treatment.

Psychological and neurodevelopmental outcomes
Recent studies have conclusively shown that GH and
IGF-1 receptors are located throughout the brain, par-
ticularly in regions related to learning and memory, such
as the hippocampus [99]. In addition, a large amount of
data suggest that GHD and reduced IGF-1 levels may
correlate with decreased cognitive ability [99], as shown
in animals with GHD presenting with smaller brain vol-
umes with reduced neuronal and glial proliferation [99].

In studies involving animal models with congenital
GHD, such as Snell (Poulfl deficient) [114], and little
(Ghrhr-deficient) mice [115], the authors described the
presence of hypomyelination and poor neuronal growth
and synaptogenesis. These features appeared to be re-
stored with postnatal GH administration [114; 115].
However, such findings were not confirmed by others
[116] or suggested to be related to compensatory upreg-
ulated production of local IGF [117].

In humans, GH-treated infants and toddlers seem to
be more alert and energetic, as reported by their fam-
ilies, and an increased rate of language and cognitive de-
velopment was reported in GH-treated patients, even if
such results may only be due to increased muscle tone
[118]. However, some data are consistent with the find-
ing that children with isolated GHD have improved in-
tellectual development if they are treated before the age
of 5 years [119] and present with improved attention,
anxiety, social competence, and thought impairment
after 3 years of treatment, even if this aspect was more
pronounced for isolated GHD patients than for those
with idiopathic short stature [120].

Interestingly, in a recent study evaluating the cognitive
functioning in 15 prepubertal PWS patients aged 3.5 to
14 years, the authors reported that GH treatment can
prevent the deterioration of some cognitive skills in the
short term and significantly improve abstract reasoning
and visuospatial skills during long-term r-hGH treat-
ment. Furthermore, children with a greater deficit can
benefit more from GH treatment [121]. This finding is
in line with those of animal studies in which dwarf rats
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treated early with GH, therefore rendering them GH-
replete in puberty but deficient as adults, displayed a
spatial learning performance comparable to that of het-
erozygous animals, whereas a longer supplementation
did not confer additional benefits, suggesting a “window
period” to be able to obtain such benefits [122].

Regarding the impact of childhood GHD on cognition,
published data outline how GHD children with low peak
GH to stimulation or low GH levels in nocturnal GH se-
cretion may present reduced performance in a visual
motor psychological test [123]. Of note, in another study
involving 79 GHD children evaluated after 1 and 3 years
of r-hGH treatment, IQ scores at baseline were within
the normal range, even if GHD children older than
7 years of age at first assessment had a mean perform-
ance IQ slightly below average [124].

Therefore, given the demonstrated effects of GHD on
brain structure, cognition and possibly behaviour, an
early diagnosis of GHD is a critical component of the
work-up of these endocrine disorders.

Conclusions

In conclusion, the available auxological results show a
favourable auxological outcome, comparable to the TH,
for patients with early-diagnosed GHD treated with r-
hGH. GH retains good efficacy in very young patients,
and early-diagnosed patients with GHD have a respon-
siveness to r-hGH that is much greater than that of
older patients. Furthermore, early detection and treat-
ment of GHD is a cost-effective strategy. Since delayed
referrals for GH diagnosis and treatment still occur fre-
quently, careful evaluation is needed when GHD is sus-
pected, given the importance of early diagnosis and
treatment.

Moreover, these preliminary but very interesting data
about early GHD diagnosis and treatment and their pos-
sible effects on metabolism require confirmation in
wider studies. Therefore, data highlighting the action of
GH and IGF-1 deficiency on the brain structure, psycho-
logical and neurodevelopmental features of GHD pa-
tients, as well as the possible effects of GH treatment,
seem to assume a “time” dependence of GHD diagnosis,
thus stressing the importance of earlier diagnosis and
treatment.
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