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Abstract

Atrioventricular canal defect (AVCD) represents a quite common congenital heart defect (CHD) accounting for 7.4%
of all cardiac malformations. AVCD is a very heterogeneous malformation that can occur as a phenotypical cardiac
aspect in the context of different genetic syndromes but also as an isolated, non-syndromic cardiac defect. AVCD
has also been described in several pedigrees suggesting a pattern of familiar recurrence. Targeted Next Generation
Sequencing (NGS) techniques are proved to be a powerful tool to establish the molecular heterogeneity of AVCD.
Given the complexity of cardiac embryology, it is not surprising that multiple genes deeply implicated in
cardiogenesis have been described mutated in patients with AVCD. This review attempts to examine the recent
advances in understanding the molecular basis of this complex CHD in the setting of genetic syndromes or in non-
syndromic patients.
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Introduction
The atrioventricular canal defect (AVCD), also called
atrioventricular septal defect, is a quite common con-
genital heart defect (CHD), accounting for 7.4% of all
cardiac malformations. It can be anatomically classified
in complete, partial and intermediate types. Complete
AVCD includes ostium primum atrial septal defect, a
common atrioventricular valve and a confluent posterior
ventricular septal defect located in the inlet portion of
ventricular septum. Partial AVCD is characterized by
ostium primun septal defect and two distinct orifices of
the atrioventricular valves with cleft of the antero-medial
leaflet of the mitral valve. The intermediate AVCD has a
restrictive ventricular septal defect associated with ana-
tomical characteristics of partial AVCD [1].
From an embryological point of view, AVCD was trad-

itionally considered caused by a primary intracardiac
mechanism consisting in the maldevelopment of atrio-
ventricular endocardial cushions in relation to defects of

extracellular matrix, leading to absent or incomplete fu-
sion of ventral (antero-superior) and dorsal (postero-in-
ferior) atrioventricular cushions [2–4]. Nevertheless, the
hypothesis that extracardiac progenitor cells contribute
also to the growth of the inlet part of the heart has been
postulated following the experimental studies in chick
embryos performed by Maria Victoria de la Cruz from
1977 on. In fact, later studies have confirmed that a
population of extramesenchymal cells known as spina
vestibuli or dorsal mesenchymal protrusion (DMP), aris-
ing from the posterior segment of the secondary heart
field (SHF) in the splanchnic mesoderm, grow towards
the atrial surface of the primitive atrioventricular canal,
in particular towards the inferior dorsal endocardial
cushion, to close the primary atrial foramen and form
the atrioventricular junction [5–9].
The AVCD is associated with extracardiac defects in

about 75% of the cases and presents strong genetic asso-
ciation [10–13]. The best known genetic syndrome asso-
ciated with AVCD is Down syndrome (DS) (45% of the
cases) [10–13]. Other chromosomal or monogenic syn-
dromes are accounting for about 15% of the cases [13].
Moreover, AVCD is associated with heterotaxy in
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additional 15% of the cases. Isolated, non-syndromic
AVCD accounts for a percentage of about 36%. It is not-
able that among non-syndromic cases, a percentage of
about 3.5% show a familial pattern of recurrence (Fig. 1).
It is noteworthy that AVCD displays anatomic variability

possibly related to different and distinct genetic causes.
Nevertheless, a common point seems to be causally impli-
cated in several disorders linked to AVCD. In fact, clinical
and molecular studies have demonstrated that several dis-
ease genes implicated in syndromes with AVCD encode
proteins that participate in ciliary function. This was in
agreement with previously known observation that dysfunc-
tion of the nodal cilium can result in left-right axis defects
in vertebrates [14, 15]. Dysfunction in cilia can lead to sev-
eral human genetic disorders with overlapping phenotypes,
the so called “ciliopathies” [16, 17]. The ciliary membranes
harbor receptors for crucial signaling cascades, including
Hedgehog signaling [18, 19]. A link between AVCD and
cilia abnormalities through a specific pathogenetic pathway
involving Hedgehog signaling has been recognized in sev-
eral syndromes with AVCD [20–23].

Syndromic AVCD and chromosomal anomalies
Down syndrome is the most frequent genetic condition
associated with AVCD. CHDs are diagnosed in 40–50%
of these patients [24]. In this syndrome AVCD is fre-
quently complete, showing a “simple type”, since rarely

associated with other cardiac anomalies, with the excep-
tion of tetralogy of Fallot [25, 26]. In particular, left-
sided obstructions are significantly more rare in patients
with DS and AVCD in comparison with patients with
AVCD and normal chromosomes [11, 24, 27]. Clinical
studies on surgical prognosis of AVCD have shown that
corrective surgery in patients with DS results in lower
mortality and morbidity rates, compared to the children
without trisomy 21 [28, 29].
From the molecular point of view, several genes located

in the “CHD critical region” on chromosome 21 have been
long investigated as a cause of AVCD, including DSCAM,
COL6A1, COL6A2, and DSCR1 [30, 31]. Additional genes
mapping on different chromosomes including CRELD1,
FBLN2, FRZB, and GATA5 have been studied [32]. Par-
ticularly, the interaction between trisomic genes and mod-
ifiers on different chromosomes has been supported in
experimental studies using mouse models of DS with high
prevalence of CHD, in which loss-of-function alleles of
Creld1 or Hey2 genes have been crossed with the trisomic
background [33]. In addition, mouse models have evi-
denced the involvement of the Shh signaling pathway also
in DS, since it has demonstrated that cerebral, skin, liver
and intestine mice trisomic cells have a defective mito-
genic Shh activity with cell proliferation impairment due
to a higher expression of Ptch1, a receptor normally
repressing the Shh pathway, located on Cr9 [34].

Fig. 1 Distribution of AVCD with and without Down syndome modified by Digilio, M.C.; Marino, B.;Toscano, A.; Giannotti, A.; Dallapiccola, B.
Atrioventricular canal defect without Down syndrome: a heterogeneous malformation. Am J Med Genet. 1999 Jul 16;85(2):140–6. (a) Mendelian
Disorders: Noonan, Ellis-van Crevels, VACTERL, Oro-facio-digital II, Smith-Lemli-Opitz, DiGeorge,Bardet-Biedl, CHARGE. (b) Extracardiac
malformations: Facial anomalies,dental anomalies, skeletal anomalies,gastrointestinal anomalies, glaucoma, mental retardation, (c) Chromosome
imbalance: del 8 p21-pter; del 8 p23-pter; del 8 p21-p23;del4 q31-q32; 47, XX, + 18; 47, XY,+ 9;45,X
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Deletion 8p23
Deletion of the terminal part of the short arm of
chromosome 8 (del 8p23) is the second chromosomal
anomaly associated with AVCD [13]. Cardiac malforma-
tions are diagnosed in two third of the patients and
AVCD is detected in about 40% of the cases [35]. AVCD
is generally complete, with a frequent association with
pulmonary valve stenosis and Tetralogy of Fallot [36,
37]. Heart defects as dextrocardia, abnormalities of the
pulmonary and systemic venous returns, common
atrium, single ventricle and transposition of the great ar-
teries are also found in a group of patients with del 8p23
[35]. Some of these malformations are also characteristic
of laterality defects. The candidate gene for CHD in this
syndrome is GATA4, which maps to the 8p23.1 region
and is expressed in the developing heart [38]. GATA4 in-
teracts with other transcriptional factors to drive DMP
progression via SHH signaling [39].

Deletion 3p25
Deletion 3p25 syndrome is also often associated with
AVCD [40–42]. Cardiac malformations are diagnosed in
about one-third of patients with deletion 3p25 patients
[42]. In this syndrome AVCD is usually complete and
CRELD1 gene is the “critical “gene, based on its map
position on chromosome 3p25 and considering that it is
known to be causally related also to non-syndromic
AVCD [43, 44]. The study of Burnicka-Turek et al. sug-
gested that CRELD1 mutations can cause AVCD acting
on SHF Hh signalling [45].

Syndromic AVCD and monogenic disorders
Ciliopathies
Several syndromes with AVCD are known to be patho-
genetically related to ciliary dysfunction. This is not sur-
prising considering that DMP development requires
cilia-based Shh signaling. In fact, the role of Hedgehog
signaling in coordinating multiple aspects of left-right
lateralization and cardiovascular growth is well known.
In addition, Sonic Hedgehog knock-out mice show
CHDs in the setting of heterotaxy and left pulmonary
isomerism [46–48].
Ciliopathies with AVCD can be divided in syndromes

with polydactyly and syndromes without polydactyly.
Among syndromes with polydactyly, ciliary dysfunction
through abnormal processing of the Hh proteins has
been documented in Ellis-van Creveld and other short-
rib polydactyly, Smith-Lemli-Opitz, and oral-facial-
digital type IV syndromes [22, 23, 49] while ciliary func-
tion is directly involved in Bardet-Biedl, oral-facial-
digital I and VI syndromes [20, 21, 50, 51].
Syndromes with ciliary involvement and AVCD

without polydactyly include VACTERL association
and Alveolar Capillary Dysplasia.

AVCD in the context of these syndromes shows ana-
tomical similarities with cardiac malformations found in
heterotaxy and polysplenia [3, 52].

* Ellis-van Creveld syndrome
The Ellis-van Creveld syndrome is an autosomal reces-
sive disorder characterized by short-limb dwarfism, short
ribs, postaxial polydactyly of hands and feet, ectodermal
defects and CHD [53]. Cardiac malformations are diag-
nosed in about two thirds of affected patients, preva-
lently AVCD associated with common atrium and
systemic and pulmonary venous abnormalities [13, 52,
54]. Interestingly, AVCD is rarely associated with com-
mon atrium in the non-syndromic patients, but fre-
quently associated in heterotaxy [55]. In the majority of
the cases, Ellis-van Creveld syndrome is due to muta-
tions in EVC and EVC2 genes but mutations in WDR35
and DYNC2LI1 gene have been demonstrated in single
patients. EVC and EVC2 genes are required for normal
transcriptional activation of Indian Hedgehog signalling
[22, 53], with involvement of the proximal end of the
primary cilium function [56]. The WDR35 encodes a
retrograde intraflagellar transport (IFT) protein that is
required for the recruitment of the EVC-EVC2-SMOH
complex to the cilium [57]. The DYNC2LI1 gene codes
for a component of the intraflaggelar transport-related
dynein-2 complex, required for cilium assembly and
function [58, 59].

* Oral-facial-digital syndromes
The oral-facial-digital syndromes include a group of 18
clinical subtypes with overlapping clinical features, in-
cluding malformations of the face, oral cavity, and digits
(polysyndactyly) [60]. CHD can also been present, and
AVCD has been frequently diagnosed in patients with
OFD syndrome type II [61] and type VI [62] and com-
mon atrium in OFD syndrome type I [63].
Several genes related to ciliary function and/or Sonic

Hedgeghog signalling have been identified, as the X-
linked dominant OFD1 gene, encoding for a centrosomal
protein involved in ciliary function [64], the WDPCP
gene linked to the planar cell polarity ciliogenesis [65]
and the TCTN3 gene implicated in transduction of Sonic
Hedgehog signalling [49].

* Joubert syndrome
Joubert syndrome is a group of genetically heteroge-
neous conditions characterized by multiorgan involve-
ment (retinal, renal, hepatic and skeletal) and the
pathognomonic neuroradiological “molar tooth sign”.
Joubert syndromes can be associated with CHDs, includ-
ing left ventricular obstructions, alone or associated with
AVCD [52, 66]. Joubert syndromes are classified among
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ciliopathies, and more than 30 causative genes have been
reported by now [67].

* Bardet-Biedl syndromes
Bardet-Biedl syndrome is an autosomal recessive dis-
order characterized by obesity, retinitis pigmentosa,
postaxial polydactyly, genitourinary malformations, cog-
nitive impairment, and CHD [68]. Laterality defects are
described, including AVCD, dextrocardia without struc-
tural cardiac defects and abdominal situs inversus [23,
69, 70]. The AVCD can be considered the “classic” CHD
in this syndrome. The syndrome is genetically heteroge-
neous, with several genes implicated, whose proteins are
involved in ciliary function regulation [20].

* Smith-Lemli-Opitz syndrome
Smith-Lemli-Opitz syndrome (SLOS) is an autosomal
recessive syndrome characterized by developmental
delay, growth retardation, cleft palate, CHD, hypospadia,
toe syndactyly, postaxial polydactyly, and facial anomal-
ies [71]. CHD occurs in one-half of patients with SLOS
[72]. Septal defects and AVCD are the most common
CHDs and AVCD is often associated with anomalous
pulmonary venous return, the latter being also a cardiac
manifestation of heterotaxy with asplenia [72].
SLOS is due to an inborn error of cholesterol metabol-

ism with deficiency of the 7-dehydrocholesterol-7 reduc-
tase (DHCR7) activity, due to mutations in the DHCR7
gene. Cholesterol plays a critical role in formation of the
normally active hedgehog proteins. Abnormal processing
of Hedgehog proteins secondary to abnormal cholesterol
levels seems to have a role in the development of SLO
syndrome malformations [73].

* VACTERL association
VACTERL is a non-random association of congenital
anomalies. Main clinical features are including verte-
bral defects (V), anal atresia (A), esophageal atresia
(TE), radial and renal dysplasia (R) and limb anomal-
ies (L), but CHDs are also an important finding in
50–80% of patients. Anatomic types of CHDs include
septal, conotruncal and laterality defects (dextrocardia,
heterotaxy, AVCD and transposition of the great ar-
teries) [74].
The causal mechanisms underlying VACTERL associ-

ation are heterogeneous and not completely established.
Clinical observations and molecular studies in mice are
showing that the association could be caused by defect-
ive SHH signaling and ciliopathies could be involved
[75–77]. Genes described to cause the spectrum of mal-
formations of VACTERL association include Ift42 [78],
FOXF1 [77] and ZIC3 [76, 77].

Alveolar capillary dysplasia
Alveolar capillary dysplasia is a congenital pulmonary
vascular abnormality, often associated with misalignment
of the pulmonary vessels. The disease is associated with
CHD in about 10% of the cases, prevalently consisting in
partial or complete AVCD and various degrees of left
heart obstruction (small left ventricle with or without
aortic coarctation) [79].
Alveolar capillary dysplasia is caused by FOXF1 gene

mutations. Several studies demonstrated that FOXF1
gene is activated by Sonic Hedgehog signaling [80].

RASopathies
The term RASopathies includes the Noonan Syndrome
and similar related syndromes (i.e., the LEOPARD syn-
drome or “Noonan syndrome with Multiple Lentigines”,
the cardio-facio-cutaneous syndrome, the Costello syn-
drome, the Mazzanti syndrome and others) caused by
mutations in genes encoding proteins with a role in the
RAS/MAP kinase (MAPK) signalling pathway [81, 82].
The RASopathies are characterized by distinctive facial

features, growth retardation, CHD, skeletal anomalies
and variable neuropsychological deficits [81]. CHD oc-
curs in about 65–85% of cases, depending on the mu-
tated genes. Although pulmonary valve stenosis with
dysplastic leaflets and hypertrophic cardiomyopathy of
left ventricle are the most frequent cardiac defects,
AVCD was also described. PTPN11 and RAF1 gene mu-
tations have been prevalently detected in patients with
AVCD associated with RASopathies [83–85]. AVCD is
usually partial and may be associated with systemic ob-
structions including subaortic stenosis or aortic coarcta-
tion [85]. Structural abnormalities causing congenital
subaortic stenosis include accessory fibrous tissue and/
or anomalous insertion of mitral valve and anomalous
papillary muscle of left ventricle [83–85].
Normal SHP2/PTPN11 function seems to act as IHH

suppressor, and experiments in mice have documented
decreased IHH levels in Noonan syndrome caused by
germline activating mutations in PTPN11 [86].

CHARGE syndrome
CHARGE syndrome is characterized by ocular colo-
boma, choanal atresia, growth and developmental delay,
genital anomalies and hearing loss. CHD is detectable in
about 85% of patients with CHARGE syndrome [87] and
AVCD is the second most frequent cardiac malforma-
tion, often in association with tetralogy of Fallot [88, 89].
The syndrome is caused by mutations in the CHD7

gene in the majority of the patients [90].

Holoprosencephaly
CHDs including septal defects have been described also in
patients with holoprosencephaly [91]. Holoprosencephaly
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(HPE) is a severe congenital forebrain disorder usually
associated with a broad spectrum of facial anomalies
ranging from single axillary dental incisor and hypote-
lorism to extreme features such as cyclopia, proboscis
and cleft lip with or without cleft palate. Shh role on
commitment of the midline of neural structures is
well known. Until now, at least 10 HPE loci have
been identified (Shh [92, 93], DKK1 [94],GLI [95],
SIX3 [96], PTCH1 [97], TDGF1 [98], TGIF [99] and
ZIC2 [100]). All the genes previously mentioned func-
tionally interact or regulate the Shh concentration to
drive forebrain development and ventral midline cell
induction during different embryonic stages. In fact,
the Shh −/−(null) mouse embryo displays a severe
form of HPE [46, 92, 93, 101]. A correct regulation of
Shh concentration is therefore crucial for the correct
brain septation. However, Shh signaling pathway is
deeply implicated also in ciliary function and acts on
the DMP to drive the proper development of the car-
diac AVC. In fact, in human beings, Shh pathway
dysregulation has a well known impact on different
types of AVCD [23]. This molecular considerations
are supported by the striking phenotypical similarities
between sonogram images of HPE (due to SHH defi-
ciency in brain development) (Fig. 2a) and echocar-
diographic images of AVCD (Fig. 2b). Images (and
phenotypes), indeed, support the unifying role of
Sonic Hedgehog signalling on the commitment of
midline structures of both brain and heart.

Ethnic variations
In different ethic population AVCD can show distinct
prevalence also in the context of the same syndrome
supporting the multiple genetic origin of this CHD. In
particular, in the context of DS, several studies highlight
the effect of sex and ethnic factors in addition to trisomy
21 to determine different prevalence of AVCD.
It is notable that in oriental and native-American DS

patients the most frequent CHD is represented by VSD

whereas in Caucasian DS populations AVCD are preva-
lent [102–104]. Freeman et al. reported significant eth-
nic differences in the prevalence of AVCD in DS
patients. The study demonstrated that blacks with DS
were twice as likely to be born with a complete AVCD
whereas Hispanics DS patients showed a trend toward
fewer AVCD [105].

Non-syndromic atrioventricular canal defects
The majority of AVCD not related to trisomy 21 occur
as sporadic cases [13] and non-syndromic patients with
visceroatrial situs solitus (without heterotaxy) account
for about 25% [13]. Indeed, AVCD prevalence decreases
to 0.97–1.32 per 10,000 livebirths looking at non-
syndromic cases (Fig. 1). In this population of non-
syndromic patients, only 3–5% show familial recurrence.
The autosomal dominant pattern of inheritance is preva-
lently involved, sometimes with incomplete penetrance.
There is emerging evidence that maternal risk factors
(genetic and environmental) can confer a major risk for
non-syndromic CHD [106, 107].
The first gene mapped for AVCD was CRELD1, lo-

cated inside the “CHD critical region” on 3p25,
known as the AVCD2 locus. CRELD1 gene acts as a
regulator of calcineurin/NFATc1 signaling which is
crucial for the regulation of cardiac development. In
fact, NFATc signaling determines valve initiation and
maturation, regulating the activity of VEGF to
undergo endomesenchimal transition (EndoMT) [108].
CRELD1 the most frequently AVCD associated gene,
since heterozygous mutations have been shown to
occur in about 6% of non-syndromic partial AVCD
[109]. In addition, some CRELD1 gene mutations, in-
cluding the c.985C > T (p.Arg329Cys) as recurrent
one [110], have been reported to be a risk factor for
CHD also in patients with DS [111]. Experimental
studies in mice have shown that the introduction of a
null allele of Creld1 in theDs65Dn mouse can in-
crease the prevalence of CHDs [112]. Interestingly, a

Fig. 2 a Coronal sonogram of fetal head with alobar holoprosencephaly. b Echocardiographic subcostal view of common atrioventricular valve in
the context of complete AVCD. CV: common valve
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link between CRELD1 and ciliary dysfunction through
disruption of Shh signaling has been suspected [45,
113].
The fact that defective NFATC1 function could con-

tribute to isolated AVCD was also demonstrated by a re-
cent work by Ferese et al. [114]. The authors reported
missense rare variants in NFATC1 gene in two patients
with non-syndromic AVCD and in one syndromic pa-
tient with AVCD in the context of heterotaxia and poly-
splenia with left isomerism. Experimental studies in
zebrafish have demonstrated that NFATC1 variants have
a great impact on cardiogenesis, affecting specifically
cardiac looping process. Interestingly, a link between
NFATC1 and CRELD1 genes has been noted, since
CRELD1 has been shown to be a master regulator of cal-
cineurin/NFATC1 signaling [114].
Several studies highlight the importance of testing

“syndromic” genes when investigating patients with iso-
lated CHDs. Some genes causative or contributory for
specific syndromes with cardiac involvement can play a
role also in isolated AVCD. In fact, linkage studies of fa-
milial AVCD first excluded chromosome 21 loci in the
pathogenesis of isolated sporadic AVCD [115, 116].
Weissman et al. [117] reported a non-synonymous

mutation of PTPN11 in a subject with isolated complete
AVCD. Missense mutation of this gene account for ap-
proximately 50% of Noonan syndrome, an autosomal
dominant disorder presenting with atrioventricular sep-
tal defects in almost 15% of cases.
Recently, D’Alessandro et al. [118] performed a

NGS (exome sequencing) analysis in a large cohort of
unrelated AVCD probands and in a replication cohort
of unrelated, non-syndromic, Caucasian AVCD pro-
bands. Data for replication analysis were obtained
from population databases. The authors found rare
damaging non-synonymous variants in six genes
(NIPBL, CHD7, CEP152, BMPR1a, ZFPM2, MDM4)
all known for their association with some syndromes
with CHDs. In humans there is a considerable pheno-
typic heterogeneity in AVCD whereby different genes
can contribute to the same phenotype. For these rea-
sons, NGS is a powerful tool that has the potential to
increase the specificity and accuracy of the observed
results.
One of the most robustly CHD-associated gene is

GATA4, mapping on the “CHD critical region” 8p23.1
[38]. GATA4 is a developmental transcription factor as-
sociated with atrial septal defects and ventricular septal
defects but also with non-syndromic AVCD.
GATA4 is required for proliferation of SHF atrial

septum progenitors and for the progression of the DMP
via Hedgehog signaling. The role of GATA4 in cardiac
AVC septation is therefore deeply dependent on Shh sig-
naling [39].

Thanks to the wide spread of NGS techniques add-
itional locus for isolated AVCD have been found. Rare
de novo missense variants in NR2F2 were described by
Al Turky et al. in 13 trios and 112 unrelated individuals
with non-syndromic AVCD [119]. The role of NR2F2
gene on cardiogenesis was postulated on the basis of a
previously published mutant mouse that shows defective
endothelial mesenchymal transformation and hypocellu-
larity of the atrioventricular canal, strongly suggesting a
role for NR2F2 in cardiac developmental in a dosage-
sensitive fashion [120].
Priest et al. in a recent study confirmed that de novo

mutations may account for a small fraction of isolated
CHDs [121]. The authors found rare de novo variants in
multiple genes (NR1D2, ADAM17, RYR1, CHRD,
PTPRJ, IFT140, ATE1, NOTCH1, NSD1, ZFPM2,
MYH6, VCAN, SRCAP, KMT2D, NOTCH2, BBS2,
EHMT1) surveying a multi-institutional cohort, combin-
ing analysis of 987 individuals (discovery cohort of 59 af-
fected trios and 59 control trios, and a replication cohort
of 100 affected singletons and 533 unaffected singletons).
The study was ruled out combining both exome-
sequencing and array-CGH, suggesting a locus hetero-
geneity and a oligogenic inheritance of isolated AVCD.
The possible role of genomic structural variants such

as copy number variants (CNV) in the etiology of non-
syndromic AVCD has only been studied in a minority of
cases. Priest et al. [122] identified two sub-chromosomal
deletions occurring in cr20p12.3 and in cr3q26.1 re-
spectively, previously not directly linked to AVCD. How-
ever, the deletions found at these loci contain some
genes that can be linked to cardiac morphogenesis. The
authors, indeed, conclude that large CNV might confer a
minor risk for isolated AVCD.
The studies cited above indicate that isolated non-

syndromic AVCD is a highly genetically heteroge-
neous malformation that probably requires an un-
known combination of factors to break the theoretical
disease threshold. Noteworthy, specific genes impli-
cated in different steps of cardiogenesis can have a
contributory role in different CHD. This observation
provides additional evidence of the wide molecular
heterogeneity in establishing cardiac phenotype and
highlights the fact that CHDs are not to be consid-
ered monogenic disorders.

Familial AVCD
The Baltimore Washington Infants Study revealed that
among non-syndromic children showing CHDs, only 3–
5% presented familial recurrence. Studies on several ped-
igrees showed that the recurrence risk for CHD among
siblings of patients with AVCD was about 3.6% [123],
similarly to the mean recurrence risk reported in previ-
ous studies [124].
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Traditionally, segregation analysis in families with
AVCD suggested an autosomal dominant pattern of
inheritance related to a major gene. The hypothesis
that AVCD shared a monogenic or oligogenic pattern
of inheritance agreed with the clinical observation
that CHDs in the offsprings were concordant with
cardiac defects in parents [123]. Nevertheless, recent
studies on large pedigrees highlight low concordance
ratios in families and importance of sex and ethnical
drive as risk factor for recurrence rates. These obser-
vations support the multigenic origin of familial
AVCD that often shows complex traits of inheritance
with incomplete penetrance [125, 126].
Molecular basis of familial AVCD are largely un-

known. Due to the fact that AVCD represent the
major CHD among DS patients, candidate genes on
chromosome 21 were firstly investigated with linkage
analysis studies. The results, however, excluded the
involvement of chromosome 21 “critical region” loci
[115, 116, 127]. Exclusion of linkage with chromo-
some 21 in families with recurrence of non-
syndromic AVCD was also consistent with previous
observations on anatomic differences between Down
and non-Down AVCD [13].
Some genes deeply implicated in cardiogenesis have

been found in pedigrees with AVCD. Missense mutation
in CRELD1 gene, mapping on cr3p, has been described
in the context of familial AVCD [128, 129] as well as
mutations in PTPN11 [117],GATA4 [130] and the p93
gene, mapping on chromosome 1 p [131].
A recent work of Demal et al. reported a family with

multiple cardiac defects including AVCD and found out
that every affected family member carries a BMPR1A
missense mutation. BMPR1A is required to ensure the
correct development of endocardial cushions via
EndoMT regulating the Wnt/ß-catenin signalling. The
reported BMPR1A variant leads to reduced atrioven-
tricular valve area and ectopic valvular tissue in experi-
mental studies in zebrafish and is to be considered a
potential candidate gene in the development of non-
syndromic AVCD [132].
Familial and isolated cases of AVCD sometimes show

variants in genes encoding for transcriptional factors
deeply implicated in cardiogenesis such as TBX20 and
Tbx2. Tbx20 is a T-box transcription factor that inter-
acts with Tbx2 to promote EndoMT and proliferation of
the AVC tissue. Therefore this gene directly acts on
endocardial cushion formation [133].
Mutations in well known genes account only for a

small percentage of familial AVCD, whereas the ma-
jority of isolated AVCD with familial recurrence
seems to have a complex etiology based on a variety
of genes. Combination of traditional linkage analysis
techniques with genome and exome sequencing

represent a powerful tool to evaluate complex trait of
recurrence of this CHDs.
A better understanding of the molecular basis of famil-

ial AVCD could have a significant impact on clinical
outcome driving a correct genetic counseling based on a
focused family history.

Implications for clinical practice
The knowledge of genetic basis of AVCD can be useful
for prenatal and postnatal clinical management of af-
fected patients.
Information about the prevalence and type of genetic

syndromes possibly associated with AVCD can be useful
for clinicians involved in prenatal controls and for tar-
geted screening for extracardiac defects. The link be-
tween anatomic types of AVCD and specific genetic
syndrome could be a marker in diagnostic work. The
large genetic heterogeneity of AVCD associated with the
possible limits of prenatal genetic testing should be
known in prenatal counseling.
In postnatal management of syndromic patients with

AVCD it is important to try to perform an early and pre-
cise genetic diagnosis. This can lead to knowledge of risk
factors, early monitoring and treatment of extracardiac
defects, the use of specific multidisciplinary protocols
and guidelines.
Genetic counseling to families is also important.

Molecular diagnosis in the proband gives the possibil-
ity to test the parents and other relatives, in order to
precise the possible familial genetic risk. Based on the
present genetic knowledge, the molecular approach is
more suitable for syndromic rather than non-
syndromic AVCD.

Conclusions
AVCD is a very heterogeneous cardiac phenotype that
frequently occurs in association with several genetic
syndromes. A better understanding of AVCD molecu-
lar background could have relevance in different clin-
ical settings. As cited above, AVCD knowledge could
drive proper genetic counselling increasing clinical
usefulness of fast and high resolution tools for
prenatal diagnosis such as array-CGH platforms (Fig. 3).
Anatomic differences in AVCD can be caused by distinct
genetic diseases. Nevertheless, molecular studies are dem-
onstrating that several genes responsible for syndromes
with AVCD can be involved in ciliary function and/or ab-
normal processing of proteins implicated in Hedgehog sig-
naling. Anomalies in different components of the
Hedgehog pathway can express in syndromic AVCD asso-
ciated with partially overlapping clinical extracardiac
manifestations.
Several studies indicate a complex genetic trait in-

volved in non-syndromic ACVD and highlight that the
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physiopathology of isolated AVCD depends on multiple
molecular mechanisms.
During early cardiogenesis the correct specification of

the atrial and ventricular chambers relies on two equally
important embryogenetic processes. On one hand the
primary intracardiac mechanism driven by the matur-
ation of endocardial cushions via EndoMT and, on the
other hand, the extracardiac mechanisms led by activa-
tion of DMP via Shh signalling to complete the AVC
septation [23].
Although the pathogenesis of syndromic AVCD seems

to be deeply related to DMP development driven by Shh
signaling, probably in isolated non-syndromic AVCD the
primary embryological step of endocardial cushion tissue
proliferation following EndoMT should be still consid-
ered as an important pathogenetic mechanism.
The pathogenesis of both syndromic and isolated

AVCD, however, appears to be as complex as still not
completely understood. Targeted NGS offers a great

opportunity to improve sensibility and specifity of gen-
etic analysis for AVCD.
Similarly to conotruncal heart defects in the context of

22q11.2 deletion syndrome and branchial arch anomal-
ies, AVCD can be considered as a phenotypic marker
linking all syndromes related to cilia through Shh path-
way. Hence, we postulate that AVCD should be consid-
ered as part of “developmental field” as introduced by
Opitz et al. [134, 135].
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