To our knowledge, this is the first report showing a possible reduction of overweight prevalence at age 5–6 years in Italian children. Other Authors have recently observed a stabilization of prevalence in nine European and not European countries [3, 4] and this phenomenon was also confirmed by similar trends found in Russia, Greenland and Scotland [12–14]. In all these reports, only speculations were done about the reasons for this change respect to previous years steeply increase. A recent systematic review supported an overall levelling off of the epidemic in children and adolescents from Australia, Europe, Japan and the USA, and the levelling off was less evident in the lower socioeconomic status groups [15].
In our Local Health Unit, a surveillance of BMI at age 5–6 y, even if discontinuous, started since 2001 and allows us to state a progressive reduction of both overweight and obesity at this age thanks to the use of the same monitoring tool, such the HR8 is. Progressively with years this tool was enriched of new information (i.e., blood pressure and waist circumference), but when we simply looked to BMI data we were able to describe changes during the entire last decade. The entity of prevalence reduction of overweight together with obesity (from 23.1 to 16.6%), really surprising, needs to be confirmed in the next years, but the direction of the observed change seems sufficiently clear to us. Moreover, the actual prevalence is lower than that reported by other studies in Northern Italy at similar age [2].
When considering the reasons responsible for this, our study can only add some speculations, taking into account that it did not include food intake, lifestyle or socioeconomic status markers. We can only state that in the meanwhile some public awareness campaigns were conducted, as well as yearly obesity prevention courses and workshops for all FP working in the Area, based on early nutrition and healthy lifestyle. The study focused only on 5–6 y children so that we don’t know if the true overweight prevalence in pediatric age is really reducing or, on the contrary, the starting age is only delayed. Moreover, our results should be strictly referred to our Area, as no data on what it is happening in other Italian regions, even with higher prevalence rates respect to ours, are available. Also changes occurred in our Local Health Unit could have influenced the results. Children 0–6 y living in the Area increased throughout the study period, together with the number of not Italian children whose percentage passed from 5.3% in 2002 to 15.6% in 2010. However, the analysis of differences between Italians vs. non Italians children, available only in the last few years, seems to indicate that the latter may have a higher risk for both underweight and overweight. It has to be mentioned that a major US Surveillance System based on low income children has shown a stabilization in obesity levels in such subgroup which is probably formed by a high rate of immigrants [16]. The higher risk for malnutrition, both in excess or defect, found in our Area in non Italians strongly suggests to implement weight control especially for those children.
It has to be underlined the overall increase of underweight children over time, from 8.2% in 2002 to 9.9% in 2011, that should be examined with extreme care, taking into account the paucity of information in literature on this topic. However, the number of subjects with severe underweight decreased during the study period, suggesting that a real concern about clinical impact of this condition is limited to a very small percentage (<1%) of children.
Our study did not allow information concerning gender until 2010 so we were compelled to use gender-independent BMI cut-offs in order to define weight categories, obtained from the mean of BMI values proposed for both genders at age 5.5. However, when both methods were compared, we found a very small discrepancy in the classification rate, suggesting that this point should not have affected our findings. Also, when available, gender did not influence BMI values, very similar between males and females, supporting our choice of a single BMI cut-off at this age where BMI normative curves are flat and very close between genders [11, 12].
Data on blood pressure and waist circumference were limited to the last three years and therefore we could not analyze variations of these parameters over time. However, both blood pressure and waist circumference data showed a clear cross-sectional relationship with weight categories with a significant increase of both parameters in overweight and obese children, as previously described [17, 18]. It seems encouraging, however, that waist-to-height ratio might show a trend towards a reduction with time associated with overweight prevalence decrease. This fact should be important, if confirmed in the next years, as waist-to-height ratio demonstrated to be an important risk factor for obesity-related health consequences [19, 20].
A limitation of the study is the lack of information concerning eating patterns and lifestyle habits changes, as well as socioeconomic status markers variations occurred during the study period, which could be related with the described BMI changes. Another limitation is that we did not evaluate the entire population of 5–6 y children living in the Area. However, we note that the previously estimated threshold of 30 % was reached in the majority of years during the study period and therefore results should be solid even from a statistical point of view.