Volume 40 Supplement 2

Proceedings of the XX National Congress of the Italian Society of Neonatology

Open Access

Formula feeding for late-preterm infants

  • Luigi Corvaglia1 and
  • Arianna Aceti1
Italian Journal of Pediatrics201440(Suppl 2):A37

https://doi.org/10.1186/1824-7288-40-S2-A37

Published: 9 October 2014

Preterm birth interrupts physiological foetal development, leading to various degrees of immaturity according to the gestational age at which the infant is born [1].

Since 2005, the imprecise definition of “near-term” infants has been replaced with “late-preterm”, which includes infants born between 340/7 and 366/7 weeks of gestation [2]. Late-preterm infants are at higher risk than term infants of developing medical complications that result in higher rates of mortality and morbidity [3], including thermal instability, respiratory problems, hypoglycaemia, jaundice, and feeding problems.

Breastfeeding is the first nutritional choice for all infants, especially for those born preterm. The establishment of successful breastfeeding in late-preterm infants is usually problematic, as late-preterm infants can be sleepier, have less muscular strength and more difficulty with latch, suck and swallow than term infants [4]. For this reason, health-care providers should implement specific strategies aimed at anticipate, identify promptly, and manage breastfeeding problems that the late-preterm infant and mother can experience.

However, when exclusive breastfeeding does not guarantee adequate nutrition, supplements might be advisable. Nutritional requirements of late-preterm infants are currently derived from speculations on foetal growth and requirements of preterm and term infants, while specific data on nutritional needs of this population are scarce. There is currently no consensus on whether late-preterm infants would benefit most of a high-protein diet, such as that proposed for “micropreterm” infants [5], or of a low-protein diet, such as that recommended for full-term infants. Some studies suggest that the provision of extra protein and energy could reduce weight loss and increase growth velocity [6], thus decreasing the risk for dehydration and hospital readmission. However, it is important to note that growth rate during late gestation decreases dramatically, and it is likely that protein and energy requirements for infants born during this period wouldn’t be as high as those of very preterm infants [7].

Current guidelines recommend the supplementation with essential nutrients also for late-preterm infants. Actually, it has been shown that supplementation with LC-PUFAs improves visual acuity and cognitive development in infants 30-37 weeks gestation [8].

The best nutritional approach to late-preterm infants still needs to be determined. Human milk’s benefits are undoubted; however, caregivers have to adequately support the establishment of successful breastfeeding and also identify those cases where some supplementation is needed. Further studies will have to clarify whether all late-preterm infants, or only a subgroup such as small-for-gestational-age infants, could benefit from formulas with high energy and protein content.

Authors’ Affiliations

(1)
Department of Medical and Surgical Sciences (DIMEC), Neonatology and Neonatal Intensive Care Unit S.Orsola-Malpighi Hospital, University of Bologna

References

  1. Raju TNK: Developmental physiology of late and moderate prematurity. Semin Fetal Neonatal Med. 2012, 17: 126-31. 10.1016/j.siny.2012.01.010.View ArticlePubMedGoogle Scholar
  2. Raju TNK, Higgins RD, Stark AR, Leveno KJ: Optimizing care and outcome for late-preterm (near-term) infants: a summary of the workshop sponsored by the National Institute of Child Health and Human Development. Pediatrics. 2006, 118: 1207-14. 10.1542/peds.2006-0018.View ArticlePubMedGoogle Scholar
  3. Engle Wa, Tomashek KM, Wallman C: “Late-preterm” infants: a population at risk. Pediatrics. 2007, 120: 1390-401. 10.1542/peds.2007-2952.View ArticlePubMedGoogle Scholar
  4. The Academy of Breastfeeding Medicine: ABM clinical protocol #10: breastfeeding the late preterm infant (34(0/7) to 36(6/7) weeks gestation) (first revision June 2011). Breastfeed Med. 2011, 6: 151-6.View ArticleGoogle Scholar
  5. Tudehope D, Fewtrell M, Kashyap S, Udaeta E: Nutritional needs of the micropreterm infant. J Pediatr. 2013, 162 (3 Suppl): S72-80.View ArticlePubMedGoogle Scholar
  6. Blackwell MT, Eichenwald EC, McAlmon K, Petit K, Linton PT, McCormick MC, Richardson DK: Interneonatal intensive care unit variation in growth rates and feeding practices in healthy moderately premature infants. J Perinatol. 2005, 25: 478-85. 10.1038/sj.jp.7211302.View ArticlePubMedGoogle Scholar
  7. Lapillonne A, O’Connor DL, Wang D, Rigo J: Nutritional recommendations for the late-preterm infant and the preterm infant after hospital discharge. J Pediatr. 2013, 162 (3 Suppl): S90-100.View ArticlePubMedGoogle Scholar
  8. Fang P, Kuo H, Huang C, Ko T, Chen C, Chung M: The effect of supplementation of docosahexaenoic acid and arachidonic acid on visual acuity and neurodevelopment in larger preterm infants. Chang Gung Med J. 2005, 28: 708-715.PubMedGoogle Scholar

Copyright

© Corvaglia and Aceti; licensee BioMed Central Ltd. 2014

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Advertisement