Cooper C. Fundamentals of hand therapy: clinical reasoning and treatment guidelines for common diagnoses of the upper extremity. Elsevier Health Sciences; 2013.
Google Scholar
Innes EV. Handgrip strength testing: a review of the literature. Aust Occup Ther J. 1999;46(3):120–40. https://doi.org/10.1046/j.1440-1630.1999.00182.x.
Article
Google Scholar
Bohannon RW. Muscle strength: clinical and prognostic value of hand-grip dynamometry. Curr Opin Clin Nutr Metab Care. 2015;18(5):465–70. https://doi.org/10.1097/MCO.0000000000000202.
Article
PubMed
Google Scholar
Rostamzadeh S, Saremi M, Bradtmiller B. Age, gender and side-stratified grip strength norms and related socio-demographic factors for 20–80 years Iranian healthy population: comparison with consolidated and international norms. Int J Ind Ergon. 2020;80(6):103003. https://doi.org/10.1016/j.ergon.2020.103003.
Article
Google Scholar
Rostamzadeh S, Saremi M, Vosoughi S, Bradtmiller B, Janani L, Farshad AA, et al. Analysis of hand-forearm anthropometric components in assessing handgrip and pinch strengths of school-aged children and adolescents: a partial least squares (PLS) approach. BMC Pediatr. 2021;21(1):1–12.
Article
Google Scholar
Moreno LA, Gonzalez-Gross M, Kersting M, Molnar D, De Henauw S, Beghin L, et al. Assessing, understanding and modifying nutritional status, eating habits and physical activity in European adolescents: the HELENA (healthy lifestyle in Europe by nutrition in adolescence) study. Public Health Nutr. 2008;11(3):288–99. https://doi.org/10.1017/S1368980007000535.
Article
CAS
PubMed
Google Scholar
Jürimäe T, Hurbo T, Jürimäe J. Relationship of handgrip strength with anthropometric and body composition variables in prepubertal children. HOMO J Comp Hum Biol. 2009;60(3):225–38. https://doi.org/10.1016/j.jchb.2008.05.004.
Article
Google Scholar
Peterson MD, Saltarelli WA, Visich PS, Gordon PM. Strength capacity and cardiometabolic risk clustering in adolescents. Pediatrics. 2014;133(4):e896–903. https://doi.org/10.1542/peds.2013-3169.
Article
PubMed
PubMed Central
Google Scholar
Saremi M, Rostamzadeh S, Nasr EM. Hand functionality in dentists: the effect of anthropometric dimensions and specialty. Int J Occup Saf Ergon. 2021;27(3):1–26.
Article
Google Scholar
Ortega FB, Silventoinen K, Tynelius P, Rasmussen F. Muscular strength in male adolescents and premature death: cohort study of one million participants. Bmj. 2012;345(nov20 3):e7279. https://doi.org/10.1136/bmj.e7279.
Article
PubMed
PubMed Central
Google Scholar
Thivel D, Ring-Dimitriou S, Weghuber D, Frelut M-L, O’Malley G. Muscle strength and fitness in pediatric obesity: a systematic review from the European childhood obesity group. Obes Facts. 2016;9(1):52–63. https://doi.org/10.1159/000443687.
Article
PubMed
PubMed Central
Google Scholar
Blakeley CE, Van Rompay MI, Schultz NS, Sacheck JM. Relationship between muscle strength and dyslipidemia, serum 25 (OH) D, and weight status among diverse schoolchildren: a cross-sectional analysis. BMC Pediatr. 2018;18(1):23. https://doi.org/10.1186/s12887-018-0998-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Desrosiers J, Bravo G, Hebert R, Dutil E. Normative data for grip strength of elderly men and women. Am J Occup Ther. 1995;49(7):637–44. https://doi.org/10.5014/ajot.49.7.637.
Article
CAS
PubMed
Google Scholar
Ekşioğlu M. Normative static grip strength of population of Turkey, effects of various factors and a comparison with international norms. Appl Ergon. 2016;52(1):8–17. https://doi.org/10.1016/j.apergo.2015.06.023.
Article
PubMed
Google Scholar
Rostamzadeh S, Saremi M, Taheri F. Maximum handgrip strength as a function of type of work and hand-forearm dimensions. Work. 2020;65(3):679–87. https://doi.org/10.3233/WOR-203100.
Article
PubMed
Google Scholar
Saremi M, Rostamzadeh S. Hand dimensions and grip strength: a comparison of manual and non-manual workers. In: Congress of the International Ergonomics Association. Springer; 2018. p. 520–9.
Google Scholar
Cohen DD, Voss C, Taylor MJD, Stasinopoulos DM, Delextrat A, Sandercock GRH. Handgrip strength in English schoolchildren. Acta Paediatr. 2010;99(7):1065–72. https://doi.org/10.1111/j.1651-2227.2010.01723.x.
Article
CAS
PubMed
Google Scholar
Chen C-Y, McGee CW, Rich TL, Prudente CN, Gillick BT. Reference values of intrinsic muscle strength of the hand of adolescents and young adults. J Hand Ther. 2018;31(3):348–56. https://doi.org/10.1016/j.jht.2017.05.012.
Article
PubMed
Google Scholar
Omar MTA, Alghadir AH, Zafar H, Al BS. Hand grip strength and dexterity function in children aged 6-12 years: a cross-sectional study. J Hand Ther. 2018;31(1):93–101. https://doi.org/10.1016/j.jht.2017.02.004.
Article
PubMed
Google Scholar
Björk M, Thyberg I, Haglund L, Skogh T. Hand function in women and men with early rheumatoid arthritis. A prospective study over three years (the Swedish TIRA project). Scand J Rheumatol. 2006;35(1):15–9. https://doi.org/10.1080/03009740510026562.
Article
PubMed
Google Scholar
Massy-Westropp NM, Gill TK, Taylor AW, Bohannon RW, Hill CL. Hand grip strength: age and gender stratified normative data in a population-based study. BMC Res Notes. 2011;4(1):127. https://doi.org/10.1186/1756-0500-4-127.
Article
PubMed
PubMed Central
Google Scholar
Ploegmakers JJW, Hepping AM, Geertzen JHB, Bulstra SK, Stevens M. Grip strength is strongly associated with height, weight and gender in childhood: a cross sectional study of 2241 children and adolescents providing reference values. J Physiother. 2013;59(4):255–61. https://doi.org/10.1016/S1836-9553(13)70202-9.
Article
PubMed
Google Scholar
Omar MTA, Alghadir A, Al BS. Norms for hand grip strength in children aged 6–12 years in Saudi Arabia. Dev Neurorehabil. 2015;18(1):59–64. https://doi.org/10.3109/17518423.2014.967878.
Article
PubMed
Google Scholar
Fess EE, Moran C. American society of hand therapists: Clinical assessment recommendations. Garner Soc; 1981. p. 6–8.
Google Scholar
Bohannon RW, Peolsson A, Massy-Westropp N, Desrosiers J, Bear-Lehman J. Reference values for adult grip strength measured with a Jamar dynamometer: a descriptive meta-analysis. Physiotherapy. 2006;92(1):11–5. https://doi.org/10.1016/j.physio.2005.05.003.
Article
Google Scholar
Mahnaz Kazemhaghighi MS. Anthropometric estimates for Iranian general population. Iran J Public Health. 2017;23(4):44–56.
Google Scholar
Han S-H, Nam K-S, Cho Y-S, Ryu K-J. Normative data on hand grip strength. J Nov Physiother. 2011;102(1):10–41.
Google Scholar
Wang Y-C, Bohannon RW, Li X, Sindhu B, Kapellusch J. Hand grip strength: normative reference values and equations for 18-to 85-year-olds residing in the United States. J Orthop Sport Phys Ther. 2018;48(9):685–93. https://doi.org/10.2519/jospt.2018.7851.
Article
Google Scholar
Musa TH, Li W, Xiaoshan L, Guo Y, Wenjuan Y, Xuan Y, et al. Association of normative values of grip strength with anthropometric variables among students, in Jiangsu Province. HOMO. 2018;69(1):70–6. https://doi.org/10.1016/j.jchb.2018.03.007.
Article
CAS
PubMed
Google Scholar
Rostamzadeh S, Saremi M, Tabatabaei S. Normative hand grip strength and prediction models for Iranian office employees. Work. 2019;62(2):233–41. https://doi.org/10.3233/WOR-192858.
Article
PubMed
Google Scholar
Gómez-Campos R, Andruske CL, De Arruda M, Sulla-Torres J, Pacheco-Carrillo J, Urra-Albornoz C, et al. Normative data for handgrip strength in children and adolescents in the Maule region, Chile: evaluation based on chronological and biological age. PLoS One. 2018;13(8):e0201033. https://doi.org/10.1371/journal.pone.0201033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferreira ACC, Shimano AC, Mazzer N, Barbieri CH, Elui VMC, Fonseca MCR. Grip and pinch strength in healthy children and adolescents. Acta Ortop Bras [online]. 2011;19(2):92–7. https://doi.org/10.1590/S1413-78522011000200006.
Article
Google Scholar
Steffl M, Chrudimsky J, Tufano JJ. Using relative handgrip strength to identify children at risk of sarcopenic obesity. PLoS One. 2017;12(5):1–9.
Article
Google Scholar
McQuiddy VA, Scheerer CR, Lavalley R, McGrath T, Lin L. Normative values for grip and pinch strength for 6-to 19-year-olds. Arch Phys Med Rehabil. 2015;96(9):1627–33. https://doi.org/10.1016/j.apmr.2015.03.018.
Article
PubMed
Google Scholar
Fredriksen PM, Mamen A, Hjelle OP, Lindberg M. Handgrip strength in 6–12-year-old children: the health oriented pedagogical project (HOPP). Scand J Public Health. 2018;46(21):54–60. https://doi.org/10.1177/1403494818769851.
Article
PubMed
Google Scholar
Rauch F, Neu CM, Wassmer G, Beck B, Rieger-Wettengl G, Rietschel E, et al. Muscle analysis by measurement of maximal isometric grip force: new reference data and clinical applications in pediatrics. Pediatr Res. 2002;51(4):505–10. https://doi.org/10.1203/00006450-200204000-00017.
Article
PubMed
Google Scholar
Dos Santos FK, Nevill A, Gomes TNQF, Chaves R, Daca T, Madeira A, et al. Differences in motor performance between children and adolescents in Mozambique and Portugal: impact of allometric scaling. Ann Hum Biol. 2016;43(3):191–200. https://doi.org/10.3109/03014460.2015.1024738.
Article
PubMed
Google Scholar
Heintz S, Kramm C, Ruch W. A meta-analysis of gender differences in character strengths and age, nation, and measure as moderators. J Posit Psychol. 2019;14(1):103–12. https://doi.org/10.1080/17439760.2017.1414297.
Article
Google Scholar
Piotrowska PJ, Stride CB, Croft SE, Rowe R. Socioeconomic status and antisocial behaviour among children and adolescents: a systematic review and meta-analysis. Clin Psychol Rev. 2015;35(1):47–55. https://doi.org/10.1016/j.cpr.2014.11.003.
Article
PubMed
Google Scholar
ISO 15535, 2012. General Requirements for Establishing Anthropometric Databases. 2012.
Google Scholar
Fritz CO, Morris PE, Richler JJ. “ Effect size estimates: Current use, calculations, and interpretation”. 2012;141(1):2–18.
Google Scholar
Chen CW, Wang JY, Lou YT, Yeh YS, Tsai HL, Huang CW. SUN-P087: the prognostic impact of radiologic assessment of Sacropenia and osteopenia in stage iii Colon cancer. Clin Nutr. 2017;36:S86. https://doi.org/10.1016/S0261-5614(17)30540-X.
Article
Google Scholar
Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2018;48(1):16–31.
Article
Google Scholar
Casanova JS. Clinical assessment recommendations (2nd ed). Am Soc Hand Ther. 1992;(6):65-71.
Mathiowetz V, Kashman N, Volland G, Weber K, Dowe M, Rogers S. Grip and pinch strength: normative data for adults. Arch Phys Med Rehabil. 1985;66(2):69–74.
CAS
PubMed
Google Scholar
Richards L, Palmiter-Thomas P. Grip strength measurement: a critical review of tools, methods, and clinical utility. Crit Rev Phys Rehabil Med. 1996;8(1):87–109. https://doi.org/10.1615/CritRevPhysRehabilMed.v8.i1-2.50.
Article
Google Scholar
Hamilton A, Balnave R, Adams R. Grip strength testing reliability. J Hand Ther. 1994;7(3):163–70. https://doi.org/10.1016/S0894-1130(12)80058-5.
Article
CAS
PubMed
Google Scholar
Bohannon RW. Test-retest reliability of measurements of hand-grip strength obtained by dynamometry from older adults: a systematic review of research in the PubMed database. J frailty aging. 2017;6(2):83–7. https://doi.org/10.14283/jfa.2017.8.
Article
CAS
PubMed
Google Scholar
Bohannon RW, Wang Y-C, Bubela D, Gershon RC. Handgrip strength: a population-based study of norms and age trajectories for 3-to 17-year-olds. Pediatr Phys Ther. 2017;29(2):118–23. https://doi.org/10.1097/PEP.0000000000000366.
Article
PubMed
Google Scholar
Häger-Ross C, Rösblad B. Norms for grip strength in children aged 4–16 years. Acta Paediatr. 2002;91(6):617–25. https://doi.org/10.1111/j.1651-2227.2002.tb03290.x.
Article
PubMed
Google Scholar
Grubbs FE. Procedures for detecting outlying observations in samples. Technometrics. 1969;11(1):1–21. https://doi.org/10.1080/00401706.1969.10490657.
Ager CL, Olivett BL, Johnson CL. Grasp and pinch strength in children 5 to 12 years old. Am J Occup Ther. 1984;38(2):107–13. https://doi.org/10.5014/ajot.38.2.107.
Article
CAS
PubMed
Google Scholar
Yim SY, Cho JR, Lee IY. Normative data and developmental characteristics of hand function for elementary school children in Suwon area of Korea: grip, pinch and dexterity study. J Korean Med Sci. 2003;18(4):552–8. https://doi.org/10.3346/jkms.2003.18.4.552.
Article
PubMed
PubMed Central
Google Scholar
Ramos E, Frontera WR, Llopart A, Feliciano D. Muscle strength and hormonal levels in adolescents: gender related differences. Int J Sports Med. 1998;19(8):526–31. https://doi.org/10.1055/s-2007-971955.
Article
CAS
PubMed
Google Scholar
Parker DF, Round JM, Sacco P, Jones DA. A cross-sectional survey of upper and lower limb strength in boys and girls during childhood and adolescence. Ann Hum Biol. 1990;17(3):199–211. https://doi.org/10.1080/03014469000000962.
Article
CAS
PubMed
Google Scholar
Archibald AB, Graber JA, Brooks-Gunn J. Pubertal processes and physiological growth in adolescence. Blackwell Handb Adolesc. 2003;(1):24–47. https://doi.org/10.1002/9780470756607.
Goswami B, Roy AS, Dalui R, Bandyopadhyay A. Impact of pubertal growth on physical fitness. Am J Sport Sci Med. 2014;2(5):34–9. https://doi.org/10.12691/ajssm-2-5A-8.
Article
Google Scholar
Round JM, Jones DA, Honour JW, Nevill AM. Hormonal factors in the development of differences in strength between boys and girls during adolescence: a longitudinal study. Ann Hum Biol. 1999;26(1):49–62. https://doi.org/10.1080/030144699282976.
Article
CAS
PubMed
Google Scholar
H HACSDMJ delmonico@ uri. edu HTBVMPSWCMBV-MPBRMTMNMNABGB. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr. 2009;90(6):1579–85. https://doi.org/10.3945/ajcn.2009.28047.
Article
CAS
Google Scholar
Sherk VD, Thiebaud RS, Chen Z, Karabulut M, Kim SJ, Bemben DA. Associations between pQCT-based fat and muscle area and density and DXA-based total and leg soft tissue mass in healthy women and men. J Musculoskelet Neuronal Interact. 2014;14(4):411–7.
CAS
PubMed
Google Scholar
Dore E, Martin R, Ratel S, Duché P, Bedu M, Van Praagh E. Gender differences in peak muscle performance during growth. Int J Sports Med. 2005;26(4):274–80. https://doi.org/10.1055/s-2004-821001.
Article
CAS
PubMed
Google Scholar
Selles RW, Zuidam JM, Willemsen SP, Stam HJ, Hovius SER. Growth diagrams for grip strength in children. Clin Orthop Relat Res. 2010;468(1):217–23.
Article
Google Scholar
Sartorio A, Lafortuna CL, Pogliaghi S, Trecate L. The impact of gender, body dimension and body composition on hand-grip strength in healthy children. J Endocrinol Investig. 2002;25(5):431–5. https://doi.org/10.1007/BF03344033.
Article
CAS
Google Scholar
Fritz J, Rosengren BE, Dencker M, Karlsson C, Karlsson MK. A seven-year physical activity intervention for children increased gains in bone mass and muscle strength. Acta Paediatr. 2016;105(10):1216–24. https://doi.org/10.1111/apa.13440.
Article
PubMed
Google Scholar
Gallagher D, Visser M, Sepulveda D, Pierson RN, Harris T, Heymsfield SB. How useful is body mass index for comparison of body fatness across age, sex, and ethnic groups? Am J Epidemiol. 1996;143(3):228–39. https://doi.org/10.1093/oxfordjournals.aje.a008733.
Article
CAS
PubMed
Google Scholar
Wu S-W, Wu S-F, Liang H-W, Wu Z-T, Huang S. Measuring factors affecting grip strength in a Taiwan Chinese population and a comparison with consolidated norms. Appl Ergon. 2009;40(4):811–5. https://doi.org/10.1016/j.apergo.2008.08.006.
Article
PubMed
Google Scholar
Weber DR, Leonard MB, Zemel BS. Body composition analysis in the pediatric population. Pediatr Endocrinol Rev PER. 2012;10(1):130–9.
PubMed
Google Scholar