Gersony WM, Duc GV, Sinclair JC. ”PCF” syndrome (persistence of the fetal circulation). Circulation. 1969;40(SupplIII):87.
Google Scholar
Stayer SA, Liu Y. Pulmonary hypertension of the newborn. Best Pract Res Clin Anesthesiol. 2010;24:375–86.
Article
Google Scholar
Teng R-J, Wu T-J. Persistent pulmonary hypertension of the newborn. J Formosan Med Assoc. 2013;112:177–84.
Article
PubMed Central
PubMed
Google Scholar
Roofthooft MTR, Elema A, Bergman KA, Berger RMF. Patient characteristics in persistent pulmonary hypertension of the newborn. Pulmon Med. 2011;2011:858154. doi:10.1155/2011/858154.
CAS
Google Scholar
Abman SH. Recent advances in the pathogenesis and treatment of persistent pulmonary hypertension of the newborn. Neonatology. 2007;91:283–90.
Article
CAS
PubMed
Google Scholar
Delaney C, Cornfield DN. Risk factors for persistent pulmonary hypertension of the newborn. Pulmon Circul. 2012;2:15–20.
Article
CAS
Google Scholar
Storme L, Aubry E, Rakza T, Houeijeh A, Debarge V, Tourneux P, et al. Pathophysiology of persistent pulmonary hypertension of the newborn: impact of the perinatal environment. Arch Cardiovasc Dis. 2013;106:169–77.
Article
PubMed
Google Scholar
Xu X-F, Ma X-L, Shen Z, Wu X-L, Cheng F, Du L-Z. Epigenetic regulation of the endothelial nitric oxide synthase gene in persistent pulmonary hypertension of the newborn rat. J Hypertens. 2010;28:2227–35.
Article
CAS
PubMed
Google Scholar
Geggel RL, Reid LM. The structural basis of PPHN. Clin Perinat. 1984;2:525–49.
Google Scholar
Rudolph AM. High pulmonary vascular resistance after birth.I. Pathophysiologic consideration and etiologic classification. Clin Pediatr. 1980;19:585–90.
Article
CAS
Google Scholar
Rudolph AM, Yuan S. Response of the pulmonary vasculature to hypoxia and H+ ion concentration changes. J Clin Invest. 1966;45:399–411.
Article
PubMed Central
CAS
PubMed
Google Scholar
Distefano G, Romeo MG, Parisi MG, Magro G. Physiopathologic and therapeutic aspects of the persistence of fetal circulation. Review of literature and personal histologic observations. Med Surg Ped. 1992;14:387–98.
CAS
Google Scholar
Gao Y, Raj JU. Regulation of the pulmonary circulation in the fetus and newborn. Physiol Rev. 2010;90:1291–335.
Article
CAS
PubMed
Google Scholar
Ziegler JW, Ivy DD, Kinsella JP, Abman SH. The role of nitric oxide, endothelin, and prostaglandins in the transition of the pulmonary circulation. Clin Perinatol. 1995;22:387–403.
CAS
PubMed
Google Scholar
Steinhorn RH, Millard SL, MorinIII PC. Persistent pulmonary hypertension of the newborn. Role of nitric oxide and endothelin in pathophysiology and treatment. Clin Perinat. 1995;22:405–28.
CAS
Google Scholar
Solomonson LP, Flam BR, Pendleton LC, Goodwin BL, Eichler D. The caveolar nitric oxide synthase/arginine regeneration system for NO production in endothelial cells. J Exp Biol. 2003;206:2083–7.
Article
CAS
PubMed
Google Scholar
Deruelle P, Grover TR, Storme L, Abman SH. Effect of BAY 41–2272, a soluble guanylate cyclase activator on pulmonary vascular reactivity in the ovine fetus. Am J Physiol Lung Cell Mol Physiol. 2005;288:L727–733.
Article
CAS
PubMed
Google Scholar
Jallard S, Larrue B, Deruelle P. Effects of phosphodiesterase 5 inhibitor on pulmonary vascular reactivity in the fetal lamb. Ann Thorac Surg. 2006;81:935–42.
Article
Google Scholar
Naeye RL. Arterial changes during the perinatal period. Arch Pathol. 1961;71:121–8.
CAS
PubMed
Google Scholar
Naeye RL, Letts HV. The effects of prolonged neonatal hypoxemia on the pulmonary vascular bed and heart. Pediatrics. 1962;30:902–9.
CAS
PubMed
Google Scholar
Haworth SG, Reid L. Persistent fetal circulation. Newly recognized structural features. J Pediatr. 1976;88:614–20.
Article
CAS
PubMed
Google Scholar
Haworth SG. Pulmonary vascular remodeling in neonatal pulmonary hypertension. Chest. 1988;93(3 Suppl):133S–8S.
CAS
PubMed
Google Scholar
Castilla-Fernandez Y, Copons-Fernàndez C, Jordan-Lucas R, Linde-Sillo A, Valenzuela-Palafoil I, Ferreres Pinas JC, et al. Alveolar capillary dysplasia with misalignment of pulmonary veins: concordance between pathological and molecular diagnosis. J Perinatol. 2013;33:401–3.
Article
CAS
PubMed
Google Scholar
Rocha G, Baptista MJ, Guimaraes H. Persistent pulmonary hypertension of non cardiac cause in a neonatal intensive care unit. Pulmon Med. 2012;2012:818971.
Google Scholar
Haworth SG. Pulmonary endothelium in the perinatal period. Pharmacol Rep. 2006;58:153–64.
PubMed
Google Scholar
Pearson DL, Dawling S, Walsh WF, Haines JL, Christman BW, Bazyk A. Neonatal pulmonary hypertension. Urea-cycle intermediate, nitric oxide production, and carbamoyl-phosphate synthetase function. N Engl J Med. 2001;344:1832–8.
Article
CAS
PubMed
Google Scholar
Hernàndez-Diaz S, Van Marter LI, Werler MM, Loik C, Mitchell AA. Risk factors for persistent pulmonary hypertension of the newborn. Pediatrics. 2007;120:e272–282.
Article
PubMed
Google Scholar
Byers HM, Dagle JM, Klein JM, Ryckman KK, McDonald EL, Murray JC. Variations in CRHR1 are associated with persistent pulmonary hypertension of the newborn. Pediatr Res. 2012;71:162–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chandrasekar I, Eis A, Konduri GG. Betamethasone attenuates oxidant stress in endothelial cells from fetal lambs with persistent pulmonary hypertension. Pediatr Res. 2008;63:67–72.
Article
CAS
PubMed
Google Scholar
da Costa DE, Nair AK, Pai MG, Al Khusaiby SM. Steroids in full term infants with respiratory failure and pulmonary hypertension due to meconium aspiration syndrome. Eur J Pediatr. 2001;160:150–3.
Article
PubMed
Google Scholar
Stenmark KR, James SR, Voelkel BF. Leukotriene C4 and D4 in neonates with hypoxemia and pulmonary hypertension. N Engl J Med. 1983;309:77–80.
Article
CAS
PubMed
Google Scholar
Hammerman C, Komar K, Abu-Khudair H. Hypoxic versus septic pulmonary hypertension: selective role of thromboxane mediation. Am J Dis Child. 1988;142:319–25.
Article
CAS
PubMed
Google Scholar
Sanderud J, Norstein J, Saugstad OD. Reactive oxygen metabolites produce pulmonary vasoconstriction in young pigs. Pediatr Res. 1991;29:543–7.
Article
CAS
PubMed
Google Scholar
Pinheiro JMB, Pitt BR, Gillis CN. Roles of platelet-activating factor and thromboxane in group B streptococcus-induced pulmonary hypertension in piglets. Pediatr Res. 1989;26:420–4.
Article
CAS
PubMed
Google Scholar
Curtis J, Kim G, Wehr NB, Levine RL. Group B streptococcus, phospholipids, and pulmonary hypertension. J Perinatol. 2011;31 Suppl 1:S24–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Velvis H, Krusell J, Roman C. Leukotrienes C4, D4 in fetal lamb tracheal fluid. J Dev Physiol. 1990;14:37–41.
CAS
PubMed
Google Scholar
Isozaki-Fukuda Y, Kojima T, Hirata Y. Plasma immunoreactive endothelin-1 concentration in human fetal blood: its relation to asphyxia. Pediatr Res. 1991;30:244–7.
Article
CAS
PubMed
Google Scholar
Fostermann U. oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat Clin Pract Cardiovasc Med. 2008;5:338–49.
Article
Google Scholar
Gong Y, Fediuk J, Lizotte PP, Dakshinamurti S. Hypoxic neonatal pulmonary arterial myocites are sensitized to ROS-generated 8-isoprostane. Free Radical Biol Med. 2010;48:882–94.
Article
CAS
Google Scholar
Allen KM, Haworth SG. Impaired adaptation of pulmonary circulation to extrauterine life in newborn pigs exposed to hypoxia: an ultrastructural study. J Pathol. 1986;150:205–12.
Article
CAS
PubMed
Google Scholar
Kuo C, Chen J. Effect of meconium aspiration on plasma endothelin-1 level and pulmonary hemodynamics in a piglet model. Biol Neonate. 1999;76:228–34.
Article
CAS
PubMed
Google Scholar
Simpson CM, Smolich JJ, Shekerdemian LS, Penny DJ. Urotensin-II contributes to pulmonary vasoconstriction in a perinatal model of persistent pulmonary hypertension of the newborn secondary to meconium aspiration syndrome. Pediatr Res. 2010;67:150–7.
Article
CAS
PubMed
Google Scholar
Murphy JD, Rabinovitch M, Goldstein JD, Reid LM. The structural basis of persistent pulmonary hypertension of the newborn infant. J Pediatr. 1981;98:962–7.
Article
CAS
PubMed
Google Scholar
Levin DL, Heymann MA, Kitterman JA, Gregory GA, Phibbs RH, Rudolph AM. Persistent pulmonary hypertension of the newborn infant. J Pediatr. 1976;89:626–30.
Article
CAS
PubMed
Google Scholar
Turner GR, Levin DL. Prostaglandin synthesis inhibition in persistent pulmonary hypertension of the newborn. Clin Perinatol. 1984;11:581–9.
CAS
PubMed
Google Scholar
Gersony WM, Morishima HO, Daniel SS, Kohl S, Cohen H, Brown W, et al. The hemodynamic effects of intrauterine hypoxia: an experimental model in newborn lamb. J Pediatr. 1976;89:631–5.
Article
CAS
PubMed
Google Scholar
Abman SH, Shanley PF, Accurso FJ. Failure of postnatal adaptation of the pulmonary circulation after chronic intrauterine pulmonary hypertension in fetal lambs. J Clin Invest. 1989;83:1849–58.
Article
PubMed Central
CAS
PubMed
Google Scholar
Villamor E, Le Cras TD, Horan MP, Albower AC, Tuder RM, Abman SH. Chronic intrauterine pulmonary hypertension impairs endothelial nitric oxide synthase in the ovine fetus. Am J Physiol. 1997;272:L1013–20.
CAS
PubMed
Google Scholar
Belik J, Keeley FW, Baldwin F, Rabinovitch M. Pulmonary hypertension and vascular remodeling in fetal sheep. Am J Physiol. 1994;266:H2303–9.
CAS
PubMed
Google Scholar
Delaney C, Gien J, Grover TR, Roe G, Abman SH. Pulmonary vascular effects of serotonin and selective serotonin reuptake inhibitors in the late gestation ovine fetus. Am J Physiol Lung Cell Mol Physiol. 2011;301:L937–44.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kieler H, Artama M, Engeland A, Ericcson O, Furu K, Gissler M, et al. Selective serotonin reuptake inhibitors during pregnancy and risk of persistent pulmonary hypertension in the newborn:population based cohort study from the five Nordic countries. BMJ. 2012;344:d8012.
Article
PubMed
Google Scholar
Jakkula M, Le Cras TD, Gebb S. Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am J Physiol Lung Cell Mol Physiol. 2000;279:L600–7.
CAS
PubMed
Google Scholar
Leung DW, Cacianes G, Kuang WJ, Goedel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989;246:1306–9.
Article
CAS
PubMed
Google Scholar
Grover TR, Parker TA, Zenge JP, Markham NE, Kinsella JP, Abman SH. Intrauterine hypertension decreases lung VEGF expression and VEGF inhibition causes pulmonary hypertension in the ovine fetus. Am J Physiol Lung Cell Mol Physiol. 2003;284:L508–17.
CAS
PubMed
Google Scholar
Gien J, Seedorf GJ, Balasubramaniam V, Markham N, Abman SH. Intrauterine pulmonary hypertension impairs angiogenesis in vitro. Role of vascular endothelial growth factor-nitric oxide signaling. Am J Respir Crit Care Med. 2007;176:1146–53.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sheata SM, Sharma HS, Mooi WJ, Tibboel D. Pulmonary Hypertension in human newborns with congenital diaphragmatic hernia is associated with decreased vascular expression of nitric oxide synthase. Cell Biochem Biophys. 2006;44:147–55.
Article
Google Scholar
Keller RL, Tacy TA, Hendricks-Munoz K, Xu J, Moon-Grady AJ, Neuhaus J, et al. Congenital diaphragmatic hernia:endothelin-1, pulmonary hypertension, and disease severity. Am J Respir Crit Care Med. 2010;182:555–61.
Article
PubMed Central
CAS
PubMed
Google Scholar
Luna MS, Franco ML, Bernardo B. Therapeutic strategies in pulmonary hypertension of the newborn: where are we now? Curr Med Chem. 2012;19:4640–53.
Article
CAS
Google Scholar
Lazar DA, Cass DL, Olutoye OO, Welty SE, Fernandes CJ, Rycus PT, et al. The use of ECMO for persistent pulmonary hypertension of the newborn: a decade of experience. J Surg Res. 2012;177:263–7.
Article
CAS
PubMed
Google Scholar
Kulik TJ, Lock JE. Pulmonary vasodilator therapy in persistent pulmonary hypertension of the newborn. Clin Perinatol. 1984;11:693–701.
CAS
PubMed
Google Scholar
Roberts JD, Shaul PW. Advances in the treatment of persistent pulmonary hypertension of the newborn. Pediatr Clin N AM. 1993;40:983–1004.
Google Scholar
Geggel RL. Inhalational nitric oxide: a selective pulmonary vasodilator for treatment of persistent pulmonary hypertension of the newborn. J Pediatr. 1993;123:76–9.
Article
CAS
PubMed
Google Scholar
Konduri GG, Kim UO. Advances in the diagnosis and management of persistent pulmonary hypertension of the newborn. Pediatr Clin N Am. 2009;56:579–600.
Article
Google Scholar
Christou H, Van Marter LJ, Wessel DL, Allred EN, Kane JW, Thompson JE, et al. Inhaled nitric oxide reduces the need for extracorporeal membrane oxygenation in infants with persistent pulmonary hypertension of the newborn. Crit Care Med. 2000;28:3722–7.
Article
CAS
PubMed
Google Scholar
The Neonatal Inhaled Nitric Oxide Study Group. Inhaled nitric oxide in full-term and near full-term infants with hypoxic respiratory failure. N Engl J Med. 1997;336:597–604.
Article
Google Scholar
Gonzàlez A, Fabres J, D’Apremont I, Urcelay G, Avaca M, Gandolfi C, et al. Randomized controlled trial of early compared with delayed use of inhaled nitric oxide in newborns with a moderate respiratory failure and pulmonary hypertension. J Perinatol. 2010;30:420–4.
Article
PubMed
Google Scholar
Finer NN, Barrington KJ. Nitric oxide for respiratory failure in infants born at or near term. Cochrane Database Syst Rev. 2006;4:CD000399.
PubMed
Google Scholar
Steinhorm RH, Russel JA, Morin FC. Disruption of cyclic GMP production in pulmonary arteries isolated from fetal lambs with pulmonary hypertension. Am J Physiol Heart Circ Physiol. 1995;268:H1483–9.
Google Scholar
Baquero H, Soliz A, Neira F, Venegas ME, Sola A. Oral sildenafil in infants with persistent pulmonary hypertension of the newborn: a pilot randomized blinded study. Pediatrics. 2006;117:1077–83.
Article
PubMed
Google Scholar
Vargas-Origel A, Gòmez-Rodrìguez G, Aldana-Valenzuela C, Vela-Huerta MM, Amador-Licona N. The use of sildenafil in persistent pulmonary hypertension of the newborn. Am J Perinatol. 2010;27:225–30.
Article
PubMed
Google Scholar
Steinhorm RH, Kinsella JP, Pierce C, Butrous G, Dilleen M, Oakes M, et al. Intravenous sildenafil in the treatment of neonates with persistent pulmonary hypertension. J Pediatr. 2009;155:841–7.
Article
Google Scholar
Noori S, Friedlich P, Wong P, Garingo A, Seri I. Cardiovascular effects of sildenafil in neonates and infants with congenital diaphragmatic hernia and pulmonary hypertension. Neonatology. 2007;91:92–100.
Article
CAS
PubMed
Google Scholar
Mohamed WA, Ismail M. A randomized, double-blind, placebo-controlled, prospective study of bosentan for the treatment of persistent pulmonary hypertension of the newborn. J Perinatol. 2012;32:608–13.
Article
CAS
PubMed
Google Scholar
Wedgwood S, Dettman RW, Black SM. ET-1 stimulates pulmonary arterial smooth muscle cell proliferation via induction of reactive oxygen species. Am J Physiol. 2001;281:L1058–67.
CAS
Google Scholar
Wedgwood S, Black SM. Role of reactive oxygen species in vascular remodeling associated with pulmonary hypertension. Antioxid Redox Signal. 2003;5:759–69.
Article
CAS
PubMed
Google Scholar
Wedgwood S, Black SM. Molecular mechanisms of nitric oxide-induced growth arrest and apoptosis in fetal pulmonary arterial smooth muscle cells. Nitric Oxide. 2003;9:201–10.
Article
CAS
PubMed
Google Scholar
Brennan LA, Steinhorm RH, Wedgewood S, Mata-Greenwood E, Roark EA, Russel A, et al. Increased superoxide generation is associated with pulmonary hypertension in fetal lambs: a role for NADPH oxidase. Circ Res. 2003;92:683–91.
Article
CAS
PubMed
Google Scholar
Black SM, Johengen MJ, Soifer SJ. Coordinated regulation of genes of the nitric oxide and endothelin pathways during the development of pulmonary hypertension in fetal lambs. Pediatr Res. 1998;44:821–30.
Article
CAS
PubMed
Google Scholar
Ananthakrishnan M, Barr FE, Summar ML, Smith HA, Kaplowitz M, Cunningham G, et al. L-Citrulline ameliorates chronic hypoxia-induced pulmonary hypertension in newborn piglets. Am J Physiol Lung Cell Mol Physiol. 2009;297:L506–511.
Article
CAS
PubMed
Google Scholar
Smith HAB, Canter JA, Christian KG, Drinkwater DC, Scholl FG, Christman BW, et al. Nitric oxide precursors and congenital heart surgery: a randomized controlled trial of oral citrullin. J Thorac Cardiovasc Surg. 2006;132:58–65.
Article
CAS
PubMed
Google Scholar
Shifren JL, Doldi N, Ferrara N, Mesiano S, Jaffe RB: In the human fetus, vascular endothelial growth factor is expressed in epithelial cells and miocytes, but not in vascular endothelium: implications for mode of action. J Clin Endocrinol Metab 79:316–322
Papapetropoulos A, Garcia-Cardena G, Madri JA, Sessa WC. Nitric oxide production contributed to angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest. 1997;100:3131–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chang R, Andreoli S, Ng YS, Truong T, Sith SR, Wilson J. VEGF expression is downregulated in nitrofen-induced congenital diaphragmatic hernia. J Pediatr Surg. 2004;39:825–8.
Article
PubMed
Google Scholar
Shaul PW, Yuhanna IS, German Z, Chen Z, Steinhorm RH, Morin FC. Pulmonary endothelial NO synthase gene expression is decreased in fetal lambs with pulmonary hypertension. Physiol Lung Cell Mol Physiol. 1997;16:L1005–12.
Google Scholar
Fike CD, Kaplowitz MR, Thomas CJ, Nelin LD. Chronic hypoxia decreases nitric oxide production and endothelial nitric oxide synthase in newborn ping lungs. Am J Physiol Lung Cell Mol Physiol. 1998;274:L517–26.
CAS
Google Scholar
Teng RJ, Du J, Xu H, Bakhutashvili I, Eis A, Shi Y, et al. Sepiapterin improves angiogenesis of pulmonary artery endothelial cells with in utero pulmonary hypertension by recoupling endothelial nitric oxide synthase. Am J Physiol Lung Cell Mol Physiol. 2011;301:L334–45.
Article
PubMed Central
CAS
PubMed
Google Scholar
Teng RJ, Eis A, Bakhutashvili I, Arul NKonduri GG. Increased superoxide production contributes to the impaired angiogenesis of fetal pulmonary arteries with in utero pulmonary hypertension. Am J Physiol Cell Mol PHysiol. 2009;297:L184–95.
Article
CAS
Google Scholar
Tuder RM, Abman SH, Braun T, Capron F, Stevens T, Thistlethwaite A, et al. Development and pathology of pulmonary hypertension. J Am Coll Cardiol. 2009;54(N 1,suppl S):S3–9.
Article
CAS
PubMed
Google Scholar
Alphonse RS, Thèbaud B. Growth factors, stem cells and bronchopulmonary dysplasia. Neonatology. 2011;99:326–37.
Article
CAS
PubMed
Google Scholar
Hansmann G, Fernandez-Gonzalez A, Aslam M, Vitali SH, Martin T, Mitsialis SA, et al. Mesenchymal stem cell-mediated reversal of bronchopulmonary dysplasia and associated pulmonary hypertension. Pulm Circ. 2012;2:170–81.
Article
PubMed Central
CAS
PubMed
Google Scholar
Alphonse R, Vadivel A, Waszac P, Fung M, Coltan L, Eaton FYoder M, et al. Existence, functional impairment and therapeutic potential of endothelial colony forming cells (ECFCs) in oxygen-induced arrested alveolar growth. Am J Respir Crit Care Med. 2011;183:A1237.
Google Scholar
Fung ME, Thèbaud B: Stem cell-based therapy for neonatal lung disease. It is in the juice. Pediatr Res 2013, doi:10.1038/pr2013.176
O’Reilly M, Thèbaud B. The promise of stem cells in bronchopulmonary dysplasia. Sem Perinatol. 2013;37:79–84.
Article
Google Scholar
Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E, Kostantinou G, et al. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation. 2012;126:2601–11.
Article
PubMed Central
CAS
PubMed
Google Scholar