Fernell E, Bejerot S, Westerlund J, Miniscalco C, Simila H, Eyles D, Gillberg C, Humble MB. Autism spectrum disorder and low vitamin D at birth: a sibling control study. Molecular Autism. 2015;6:3.
Article
Google Scholar
Fahmy SF, Sabri NA, El Hamamsy MH, El Sawi M, Zaki OK. Vitamin D Intake and Sun Exposure in Autistic Children. IJPSR. 2016;7(3):1043–9.
CAS
Google Scholar
Esparham AE, Smith T, Belmont JM, Michael Haden BA, Wagner LE, Evans RG, Drisko JA. Nutritional and Metabolic Biomarkers in Autism SpectrumDisorders: An Exploratory Study. Integrative Medicine. 2015;14(2):40–53.
PubMed
Google Scholar
Chaste P, Leboyer M. Autism risk factors: genes, environment, and gene-environment interactions. Dialogues Clin Neurosci. 2012;14:281–92.
PubMed
PubMed Central
Google Scholar
Coleman M, Gillberg C. The autisms. Oxford: Oxford University; 2012.
Google Scholar
Patterson PH. Maternal infection and immune involvement in autism. Trends Mol Med. 2011;17:389–94.
Article
CAS
Google Scholar
Ohkawara T, Katsuyama T, Ida-Eto M, Narita N, Narita M. Maternal viral infection during pregnancy impairs development of fetal serotonergic neurons. Brain and Development. 2015;37:88–93.
Article
Google Scholar
Meador KJ, Loring DW. Prenatal valproate exposure is associated with autism spectrum disorder and childhood autism. J Pediatr. 2013;163:924.
Article
Google Scholar
Landgren M, Svensson L, Strömland K, Andersson GM. Prenatal alcohol exposure and neurodevelopmental disorders in children adopted from Eastern Europe. Pediatrics. 2010;125:e1178–85.
Article
Google Scholar
Idring S, Magnusson C, Lundberg M, Ek M, Rai D, Svensson AC, et al. Parental age and the risk of autism spectrum disorders: findings from a Swedish population-based cohort. Int J Epidemiol. 2014;43:107–15.
Article
Google Scholar
Chakrabarti S, Fombonne E. Pervasive developmental disorders in preschool children. JAMA. 2001;285:3093–9.
Article
CAS
Google Scholar
New Zealand Guidelines Group. What does ASD look like? In a resource to help identify autism Spectrum disorder. Wellington: New Zealand Guidelines Group; 2010.
Google Scholar
Kogan MD, Blumberg SJ, Schieve LA, Boyle CA, Perrin JM, Ghandour RM, Singh GK, Strickland BB, Trevathan E, van Dyck PC. Prevalence of parent-reported diagnosis of autism Spectrum disorder among children in the us, 2007. Pediatrics. 2009;124:1395–403.
Article
Google Scholar
Ghanizadeh A. A preliminary study on screening prevalence of pervasive developmental disorder in schoolchildren in Iran. J Autism Dev Disord. 2008;38:759–76.
Article
Google Scholar
Baio J. Prevalence of Autism Spectrum Disorders—Autism and Developmental Disabilities Monitoring Network,14 Sites, United States, 2008; Morbidity and mortality weekly report; Surveillance summaries, vol. 61. Atlanta: Centers for Disease Control and Prevention; 2012. p. 1–19.
Google Scholar
Developmental Disabilities Monitoring Network Surveillance Year 2010 Principal Investigators; Centers for Disease Control and Prevention (CDC). Prevalence of autism spectrum disorder among children aged 8 years— autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill Summ. 2014;63(2):1–21.
Google Scholar
Hansen SN, Schendel DE, Parner ET. Explaining the increase in the prevalence of autism Spectrum disorders: the proportion attributable to changes in reporting practices. JAMA Pediatr. 2015;169:56–62.
Article
Google Scholar
Saad K, Abdel-Rahman AA, Elserogy YM, Al-Atram AA, Cannell JJ, Bjørklund G, et al. Vitamin D status in autism spectrum disorders and the efficacy of vitamin D supplementation in autistic children. Nutr Neurosci. 2015;19(8):346–51.
Article
Google Scholar
Kočovsk E, Fernell E, Billstedt E, Minnis H, Gillberg C. Vitamin D and autism: clinical review. Res Dev Disabil. 2012;33:1541–50.
Article
Google Scholar
Meguid NA, Hashish AF, Anwar M, Sidhom G. Reduced serum levels of 25-hydroxy and 1,25-dihydroxy vitamin D in Egyptian children with autism. J Altern Complement Med. 2010;16:641–5.
Article
Google Scholar
Bener A, Hoffmann GF. Nutritional rickets among children in a sun rich country. Int J Pediatr Endocrinol. 2010;2010:410–502.
Article
Google Scholar
Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96:1911–30.
Article
CAS
Google Scholar
Eyles DW, Burne TH, McGrath JJ. Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Front Neuroendocrinol. 2013;34:47–64.
Article
CAS
Google Scholar
McGrath J. Is it time to trial vitamin D supplements for the prevention of schizophrenia? Acta Psychiatr Scand. 2010;121:321–4.
Article
Google Scholar
Cannell JJ. Autism and vitamin D. Med Hypotheses. 2008;70:750–9.
Article
CAS
Google Scholar
Bakare MO, Munir KM, Kinney DK. Association of hypomelanotic skin disorders with autism: links to possible etiologic role of vitamin-D levels in autism? Hypothesis (Tor), vol. 9; 2011. p. e2.
Google Scholar
Cannell JJ, Grant WB. What is the role of vitamin D in autism? Dermatoendocrinol. 2013;5:199–204.
Article
Google Scholar
Gentile I, Zappulo E, Militerni R, Pascotto A, Borgia G, Bravaccio C. Etiopathogenesis of autism spectrum disorders: fitting the pieces of the puzzle together. Med Hypotheses. 2013;81:26–35.
Article
Google Scholar
Humble MB, Gustafsson S, Bejerot S. Low serum levels of 25-hydroxyvitamin D (25-OHD) among psychiatric out-patients in Sweden: relations with season, age, ethnic origin and psychiatric diagnosis. J Steroid Biochem Mol Biol. 2010;121(1-2):467–70.
Article
CAS
Google Scholar
Mostafa GA, Al-Ayadhi LY. Reduced serum concentrations of 25-hydroxy vitamin D in children with autism: relation to autoimmunity. J Neuroinflammation. 2012;17:201.
Google Scholar
Duan XY, Jia FY, Jiang HY. Relationship between vitamin D and autism spectrum disorder. Zhongguo Dang Dai Er Ke Za Zhi. 2013;15:698–702.
CAS
PubMed
Google Scholar
Gong ZL, Luo CM, Wang L, Shen L, Wei F, Tong RJ, et al. Serum 25- hydroxyvitamin D levels in Chinese children with autism spectrum disorders. Neuroreport. 2014;25:23–7.
Article
CAS
Google Scholar
Molloy CA, Kalkwarf HJ, Manning-Courtney P, Mills JL, Hediger ML. Plasma 25(OH)D concentration in children with autism spectrum disorder. Developmental Medicine & Child Neurology. 2010;52:969–71.
Article
Google Scholar
Hashemzadeh M, Moharreri F, Soltanifar A. Comparative study of vitamin D levels in children with autism spectrum disorder and normal children: a case-control study. Journal of Fundamentals of Mental Health. 2015 July-Aug;17(4):197–201.
Google Scholar
C. Ug˘ur, C.K. Gu¨rkan. Serum vitamin D and folate levels in children with autism spectrum disorders. Research in Autism Spectrum Disorders. 2014;8:1641–1647.
Rossignol DA, Frye RE. Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry. 2012;17(3):290–314.
Zhang HL, Wu J. Role of vitamin D in immune responses and autoimmune diseases, with emphasis on its role in multiple sclerosis. Neurosci Bull. 2010;26:445–54.
Article
CAS
Google Scholar
Hamza RT, Awwad KS, Ali MK, Hamed AI. Reduced serum concentrations of 25-hydroxy vitamin D in Egyptian patients with systemic lupus erythematosus: relation to disease activity. Med Sci Monit. 2011;17:CR711–8.
Article
CAS
Google Scholar
Patrck RP, Ames BN. Vitamin D hormone regulates serotonin synthesis.Part1: relevance for autism. FASEB J. 2014;28(6):2398–413. https://doi.org/10.1096/FJ.13-246546.
Article
Google Scholar
Feng J, Shan L, Du L, Wang B, Li H, Wang W, Wang T, Dong H, Yue X, Xu Z, et al. Clinical improvement following vitamin D3 supplementation in autism Spectrum disorder. Nutr Neurosci. 2016;20(5):284–90.
Article
Google Scholar
Tostes MHFDS, Polonini HC, Gattaz WF, Raposo NRB, Baptista EB. Low serum levels of 25-hydroxyvitamin D (25-OHD) in children with autism. Trends Psychiatry Psychother. 2012;34:161–3.
Article
Google Scholar
Bener A, Khattab AO, Al-Dabbagh MM. Is high prevalence of vitamin D deficiency evidence for autism disorder? In a highly endogamous population. J Pediatr Neurosci. 2014;9:227–33.
Article
Google Scholar