The search from January 2018 to March 2019 retrieved a total of 1316 papers (Fig. 1). We screened all the records and made the first selection by reading titles and then abstracts. Finally, we read the full text of the remaining 9 articles. The number of participants in each study ranged from 4 to18 years (1 study had a participant aged 20 years), while the sample size ranged from 30 to 121 subjects. Four articles were written in the United States, 1 in Canada, 1 in China, 1 in India, 1 in Syria e 1 in Australia. Four of 7 studies were published during 2018, a significant scientific year of interest; 3 articles were published in 2019, 1 paper in 2015 and 1 study in 2014.VR was used to reduce pain in the following procedures: vaso-occlusive pain episodes (VOE), inferior alveolar nerve block (IAN), immunization, pulp therapy, phlebotomy, dressing changes, burn wound care, IV placements and venipunctures. We summarized the major findings and their main characteristics (Table 1). Agrawal et al. used VR to manage vaso-occlusive pain episodes in patients with sickle cell disease (SCD). Even if one patient was 20 years old, we decided to include this study since most patients were in the pediatric age range. Pain was evaluated using the validated adolescent pediatric pain tool (APPT). Results showed the feasibility of the study and a reduction of median pain intensity: Pre-VR = 7.3; Post-VR = 3.0. In addition, the number of affected body areas decreased: pre-VR = 3.0 post-VR = 2.0 [5]. Al-Halabi et al. used VR to reduce pain in child behavior management during an inferior alveolar nerve block. Children were divided in three groups as follows: Group A (Control group), IAN administrated with basic behavior guidance techniques; Group B: IAN administrated using AV eyeglasses ‘VR box’ and wireless headphone; Group C: IAN administrated using tablet device and wireless headphones. No difference in pain level was found between the control group and the group that used Virtual Reality [6]. Chad et al. used VR to reduce pain and fear during immunization. The study also collected data on parents’ pain and perception of fear in their child while using VR. Anticipatory pain and fear were registered before the immunization, and both values decreased in 94.1% of children after the immunization with VR headset [7]. A Wong-Baker pain scale (score 0–5) was used to register the pain. On average, pain decreased by 2.57 points. Also, fear significantly decreased, and both pain and fear significantly decreased in parents’ perception too.
Chan et al. used VR to study its effect on pain perception during venipunctures and intravenous cannulation and no difference in pain between venipuncture and intravenous cannulation were reported. The study was carried out in 2 different environments: emergency department and pathology. Also, the topical local anesthetic use was high. The child-rated Faces Pain Scale-Revised was adopted to assess the pain (score 0–10). The patients underwent procedures in the emergency department experienced a reduction in pain perception of 1.78, while the patients in pathology experienced a reduction of 1.39. In addition, fewer people were required to restrain patients during the procedures. The sample size analyzed was not numerically sufficient in the statistical analysis [8].
Doumlin et al. investigated the efficacy of VR as a mode of distraction during venipunctures and intravenous cannulation, comparing it with watching television and with distraction provided by the Child Life program. The authors demonstrated that although a reduction in fear of pain was observed, no differences were found in pain intensity. Again, topical anesthetic was applied to the majority of participants before the procedures. The authors also stated that the sample size analyzed was numerically sufficient in the statistical analysis [9].
Niharika et al. used VR to reduce pain during pulp therapy in pediatric patients. The study provided 3 sessions and 2 groups (A = 20 children; B = 20 children). In the first session no children used VR. In the second session Group A used VR while Group B did not use it. In the third session Group A did not use VR while Group B did use it. Faces version of the Modified Child Dental Anxiety Scale (MCDAS[f]) Questionnaire was used to evaluate state anxiety and a Wong–Baker Faces Pain Rating Scale was used to assess pain perceived during dental procedures. Group A’s pain value in the second session was 2.56 ± 0.39; in the third session pain was 5.22 ± 0.515. In Group B pain value was 5.44 ± 0.682 in the second session; in the third session pain was 2.33 ± 0.37. In conclusion, VR significantly reduced pain in both groups. In addition, pain reduction in Group B was more intense [10]. Gerçeker et al. used VR to reduce pain during phlebotomy. Patients were randomly allocated to 3 groups (1 using VR, 1 using external cold and vibration and 1 used as control group). Results showed that no statistical difference was found between the groups using VR and the group using external cold and vibration, according to the pain scores reported by children themselves, parents, the nurse, and the researcher. Anyway, reported pain was statistically lower in groups 1 and 2 compared to group 3 [11]. Hua et al. used VR to reduce pain while changing dressing in pediatric patients with Chronic Wounds on Lower Limbs [12]. The procedure included undressing, cleaning the wound, and getting a different dress after a doctor assessed the wound. Children rated their pain before, during, and after the dressing changes with a Wong–Baker Faces (FACES) picture scale. Also, caregivers and nurses registered pre-, intra- and post-dressing change pain with the visual analogue scale (VAS) and the Face, Legs, Activity, Cry, Consolability (FLACC) pain behavior scale. The results of the Wong–Baker scale follow before dressing change: Standard Distraction = 1.63 ± 1.39, VR Distraction = 0.85 ± 1.12 during dressing change: Standard Distraction = 4.19 ± 2.12, VR distraction = 2.42 ± 1.85 after dressing change: Standard Distraction = 3.38 ± 1.48, VR distraction = 2.48 ± 1.8. Also, VAS and FLACC showed pain reduction during every step. Along with pain, time length for dressing changes was registered in both groups: 27.9 ± 6.83 min for the standard distraction group vs 22.3 ± 7.85 min for the VR distraction group. Another study used VR to reduce procedural pain during burn wound care [13]. Participants were randomly assigned to three groups: standard care, passive distraction watching a movie or VR distraction. A 100-mm line word graphic rating scale (WGRS) was used to measure the procedural pain. Participants in the VR group reported significantly less procedural pain than the passive distraction group, with a difference of 2.37 cm in the WGRS.