De Ferranti SD, Steinberger J, Ameduri R, Baker A, Gooding H, Kelly AS, et al. Cardiovascular risk reduction in high-risk pediatric patients: a scientific statement from the american heart association. Circulation. 2019;139(13):e603–34. https://doi.org/10.1161/CIR.0000000000000618 PMID: 30798614.
Article
PubMed
Google Scholar
Milei J, Ottaviani G, Lavezzi AM, Grana DR, Stella I, Matturri L. Perinatal and infant early atherosclerotic coronary lesions. Can J Cardiol. 2008;24(2):137–41. https://doi.org/10.1016/s0828-282x(08)70570-1.
Article
PubMed
PubMed Central
Google Scholar
Juonala M, Viikari JSA, Raitakari OT. Main findings from the prospective cardiovascular risk in young finns study. Curr Opin Lipidol. 2013;24(1):57–64. https://doi.org/10.1097/MOL.0b013e32835a7ed4.
Article
CAS
PubMed
Google Scholar
Canas JA, Sweeten S, Balagopal P. Biomarkers for cardiovascular risk in children. Curr Opin Cardiol. 2013;28(2):103–14. https://doi.org/10.1097/HCO.0b013e32835dd0ce.
Article
PubMed
Google Scholar
Wilson DP, et al. Is Atherosclerosis a Pediatric Disease? In: Feingold KR, Anawalt B, Boyce A, et al., editors. Endotext. South Dartmouth (MA): MDText.com Inc; 2020.
Google Scholar
Genovesi S, Giussani M, Orlando A, Battaglino MG, Nava E, Parati G. Prevention of cardiovascular diseases in children and adolescents. High Blood Press Cardiovasc Prev. 2019;26(3):191–7. https://doi.org/10.1007/s40292-019-00316-6.
Article
PubMed
Google Scholar
Berenson GS. Bogalusa heart study: a long-term community study of a rural biracial (black/white) population. Am J Med Sci. 2001;322(5):293–300.
Article
CAS
PubMed
Google Scholar
McGill HC, McMahan CA. Determinants of atherosclerosis in the young. Am J Cardiol. 1998;82(10 B):30T–36T. https://doi.org/10.1016/s0002-9149(98)00720-6.
Article
PubMed
Google Scholar
Pires A, Sena C, Seiça R. Dyslipidemia and cardiovascular changes in children. Curr Opin Cardiol. 2016;31(1):95–100. https://doi.org/10.1097/HCO.0000000000000249.
Article
PubMed
Google Scholar
Medeiros AM, Alves AC, Aguiar P, Bourbon M. Cardiovascular risk assessment of dyslipidemic children: analysis of biomarkers to identify monogenic dyslipidemia. J Lipid Res. 2014;55(5):947–55. https://doi.org/10.1194/jlr.P043182.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shah AS, Wilson DP. Primary hypertriglyceridemia in children and adolescents. J Clin Lipidol. 2015;9(5):S20–8. https://doi.org/10.1016/j.jacl.2015.04.004.
Article
PubMed
Google Scholar
De Jesus JM. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: Summary report. Pediatrics. 2011;128(SUPP.5):213–56. https://doi.org/10.1542/peds.2009-2107C.
Article
Google Scholar
Smith AJ, Turner EL, Kinra S. Universal cholesterol screening in childhood: a systematic review. Acad Pediatr. 2016;16(8):716–25. https://doi.org/10.1016/j.acap.2016.06.005.
Article
PubMed
Google Scholar
Rodenburg J, Vissers MN, Wiegman A, Van Trotsenburg ASP, Van Der Graaf A, De Groot E, et al. Statin treatment in children with familial hypercholesterolemia: the younger, the better. Circulation. 2007;116(6):664–8. https://doi.org/10.1161/CIRCULATIONAHA.106.671016.
Article
CAS
PubMed
Google Scholar
McNiece KL, Poffenbarger TS, Turner JL, Franco KD, Sorof JM, Portman RJ. Prevalence of hypertension and prehypertension among adolescents. J Pediatr. 2007;150:640–4. https://doi.org/10.1016/j.jpeds.2007.01.052.
Article
PubMed
Google Scholar
Symonides B, Jędrusik P, Artyszuk L, Gryboś A, Dziliński P, Gaciong Z. Different diagnostic criteria significantly affect the rates of hypertension in 18-year-old high school students. Arch Med Sci. 2010;6:689–94. https://doi.org/10.5114/aoms.2010.17082.
Article
PubMed
PubMed Central
Google Scholar
Daley MF, Sinaiko AR, Reifler LM, Tavel HM, Glanz JM, Margolis KL, et al. Patterns of care and persistence after incident elevated blood pressure. Pediatrics. 2013;132:e349–435. https://doi.org/10.1542/peds.2012-2437.
Article
PubMed
PubMed Central
Google Scholar
Litwin M. Why should we screen for arterial hypertension in children and adolescents? Pediatr Nephrol. 2018;33(1):83–92. https://doi.org/10.1007/s00467-017-3739-8.
Article
PubMed
Google Scholar
Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics. 2017;140(3):e20171904. https://doi.org/10.1542/peds.2017-1904.
Article
PubMed
Google Scholar
Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71(6):e13–115. https://doi.org/10.1161/HYP.0000000000000065.
Article
CAS
PubMed
Google Scholar
Juhola J, Magnussen CG, Berenson GS, Venn A, Burns TL, Sabin MA, et al. Combined effects of child and adult elevated blood pressure on subclinical atherosclerosis: the international childhood cardiovascular cohort consortium. Circulation. 2013;128:217–24. https://doi.org/10.1161/CIRCULATIONAHA.113.001614.
Article
PubMed
Google Scholar
Assadi F. Effect of microalbuminuria lowering on regression of left ventricular hypertrophy in children and adolescents with essential hypertension. Pediatr Cardiol. 2007;28:27–33. https://doi.org/10.1007/s00246-006-1390-4.
Article
PubMed
Google Scholar
Litwin M, Niemirska A, Sladowska-Kozlowska J, Wierzbicka A, Janas R, Wawer ZT, et al. Regression of target organ damage in children and adolescents with primary hypertension. Pediatr Nephrol. 2010;25:2489–99. https://doi.org/10.1007/s00467-010-1626-7.
Article
PubMed
PubMed Central
Google Scholar
Tutarel O. Acquired heart conditions in adults with congenital heart disease: a growing problem. Heart. 2014;100(17):1317–21. https://doi.org/10.1136/heartjnl-2014-305575.
Article
PubMed
Google Scholar
Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the framingham heart study. N Engl J Med. 1990;322:1561–6. https://doi.org/10.1056/NEJM199005313222203.
Article
CAS
PubMed
Google Scholar
Goldstein SA, Ottavio AD, Spears T, Chiswell K, Hartman RJ, Krasuski RA, et al. Causes of death and cardiovascular comorbidities in adults with congenital heart disease. J Am Heart Assoc. 2020;9:e016400. https://doi.org/10.1161/JAHA.119.016400.
Article
PubMed
PubMed Central
Google Scholar
Mohammad Nijres B, Samuel BP, Vettukattil JJ. Subclinical atherosclerosis in patients with cyanotic congenital heart disease. Int J Cardiol. 2019;282:44. https://doi.org/10.1016/j.ijcard.2018.10.044.
Article
PubMed
Google Scholar
Giannakoulas G, Dimopoulos K, Engel R, Goktekin O, Kucukdurmaz Z, Vatankulu MA, et al. Burden of coronary artery disease in adults with congenital heart disease and its relation to congenital and traditional heart risk factors. Am J Cardiol. 2009;103(10):1445–50. https://doi.org/10.1016/j.amjcard.2009.01.353.
Article
PubMed
Google Scholar
Chen KYH, Curtis N, Dahdah N, Kowalski R, Cheung M, Burgner DP. Kawasaki disease and cardiovascular risk: a comprehensive review of subclinical vascular changes in the longer term. Acta Paediatr Int J Paediatr. 2016;105(7):752–61. https://doi.org/10.1111/apa.13367.
Article
Google Scholar
Uehara R, Belay ED. Epidemiology of kawasaki disease in Asia, Europe, and the United States. J Epidemiol. 2012;22(2):79–85. https://doi.org/10.2188/jea.je20110131.
Article
PubMed
PubMed Central
Google Scholar
Nakamura Y, Aso E, Yashiro M, Uehara R, Watanabe M, Oki I, et al. Mortality among persons with a history of kawasaki disease in Japan: Mortality among males with cardiac sequelae is significantly higher than that of the general population. Circ J. 2008;72(1):134–8. https://doi.org/10.1253/circj.72.134.
Article
PubMed
Google Scholar
Ikemoto Y, Ogino H, Teraguchi M, Kobayashi Y. Evaluation of preclinical atherosclerosis by flow-mediated dilatation of the brachial artery and carotid artery analysis in patients with a history of Kawasaki disease. Pediatr Cardiol. 2005;26(6):782–6. https://doi.org/10.1007/s00246-005-0921-8.
Article
CAS
PubMed
Google Scholar
Ishikawa T, Iwashima S. Endothelial dysfunction in children within 5 years after onset of Kawasaki disease. J Pediatr. 2013;163(4):1117–21. https://doi.org/10.1016/j.jpeds.2013.04.046.
Article
CAS
PubMed
Google Scholar
Takahashi K, Oharaseki T, Naoe S. Pathological study of postcoronary arteritis in adolescents and young adults: With reference to the relationship between sequelae of Kawasaki disease and atherosclerosis. Pediatr Cardiol. 2001;22(2):138–42. https://doi.org/10.1007/s002460010180.
Article
CAS
PubMed
Google Scholar
Lin J, Jain S, Sun X, Liu V, Sato YZ, Jimenez-Fernandez S, et al. Lipoprotein particle concentrations in children and adults following kawasaki disease. J Pediatr. 2014;165(4):727–31. https://doi.org/10.1016/j.jpeds.2014.06.017.
Article
CAS
PubMed
PubMed Central
Google Scholar
United States Renal Data System. 2016 annual report: ESRD among children, adolescents, and young adults. 2016. https://www.usrds.org/2016/view/v2_08.aspx. Accessed 2 August 2020.
Foster BJ, Dahhou M, Zhang X, Platt RW, Hanley JA. Change in mortality risk over time in young kidney transplant recipients. Am J Transplant. 2011;11:2432–42. https://doi.org/10.1111/j.1600-6143.2011.03691.x.
Article
CAS
PubMed
Google Scholar
Mitsnefes MM. Cardiovascular disease in children with chronic kidney disease. J Am Soc Nephrol. 2012;23:578–85. https://doi.org/10.1016/j.semnephrol.2018.08.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parekh RS, CarrollCE WRA, Port FK. Cardiovascular mortality in children and young adults with end stage kidney disease. JPediatr. 2002;141:191–7. https://doi.org/10.1067/mpd.2002.125910.
Article
CAS
Google Scholar
Weaver DJ, Mitsnefes M. Cardiovascular disease in children and adolescents with chronic kidney disease. Semin Nephrol. 2018;38(6):559–69. https://doi.org/10.1016/j.semnephrol.2018.08.002.
Article
PubMed
Google Scholar
Paoletti E, De Nicola L, Gabbai FB, Chiodini P, Ravera M, Peiracci L, et al. Associations of left ventricular hypertrophy and geometry with adverse outcomes in patients with CKD and hypertension. Clin J Am Soc Nephrol. 2017;11:271–9. https://doi.org/10.2215/CJN.06980615.
Article
Google Scholar
Di Lullo L, Gorini A, Russo D, Santoboni A, Ronco C. Left ventricular hypertrophy in chronic kidney disease patients: from pathophysiology to treatment. Cardiorenal Med. 2015;5:254–66. https://doi.org/10.1159/000435838.
Article
PubMed
PubMed Central
Google Scholar
Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, et al. FGF 23 induces left ventricular hypertrophy. J Clin Invest. 2011;121:4393–408. https://doi.org/10.1172/JCI46122.
Article
CAS
PubMed
PubMed Central
Google Scholar
Portale AA, Wolf MS, Messinger S, Perwad F, Juppner H, Warady BA, et al. Fibroblast growth factor 23 and risk of CKD progression in children. Clin J Am Soc Nephrol. 2016;11:1989–98. https://doi.org/10.2215/CJN.02110216.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruebner RL, Ng D, Mitsnefes M, Foster BJ, Meyers K, Warady B, et al. Cardiovascular disease risk factors and left ventricular hypertrophy in girls and boys with CKD. Clin J Am Soc Nephrol. 2016;11(11):1962–8. https://doi.org/10.2215/CJN.01270216.
Article
PubMed
PubMed Central
Google Scholar
Kupferman JC, Aronson Friedman L, Cox C, Flynn J, Furth S, Warady B, et al. BP control and left ventricular hypertrophy regression in children with CKD. J Am Soc Nephrol. 2014;25:167–74. https://doi.org/10.1681/ASN.2012121197.
Article
PubMed
Google Scholar
Tukenova M, Guibout C, Oberlin O, Doyon F, Mousannif A, Haddy N, et al. Role of cancer treatment in long term overall and cardiovascular mortality after childhood cancer. J Clin Oncol. 2010;28:1308–15. https://doi.org/10.1200/JCO.2008.20.2.
Article
PubMed
Google Scholar
Dengel DR, Kelly AS, Zhang L, Hodges JS, Baker KS, Steinberger J. Signs of early sub-clinical atherosclerosis in childhood cancer survivors. Pediatr Blood Cancer. 2014;61:532–7. https://doi.org/10.1002/pbc.24829.
Article
PubMed
Google Scholar
Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM, Meadows AT, et al. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med. 2006;355:1572–82. https://doi.org/10.1056/NEJMsa060185.
Article
CAS
PubMed
Google Scholar
Mulrooney DA, Yeazel MW, Kawashima T, Mertens AC, Mitby P, Stovall M, et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ. 2009;339:b4606. https://doi.org/10.1136/bmj.b4606.
Article
PubMed
PubMed Central
Google Scholar
Lipshultz SE, Adams MJ, Colan SD, Constine LS, Herman EH, Hsu DT, et al. Long-term cardiovascular toxicity in children, adolescents, and young adults who receive cancer therapy: pathophysiology, course, monitoring, management, prevention, and research directions: a scientific statement from the American Heart Association. Circulation. 2013;128:1927–95. https://doi.org/10.1161/CIR.0b013e3182a88099.
Article
PubMed
Google Scholar
Martin PJ, Counts GW Jr, Appelbaum FR, Lee SJ, Sanders JE, Deeg HJ, et al. Life expectancy in patients surviving more than 5 years after hematopoietic cell transplantation. J Clin Oncol. 2010;28:1011–6. https://doi.org/10.1200/JCO.2009.25.6693.
Article
PubMed
PubMed Central
Google Scholar
Friedman DN, Hilden P, Moskowitz CS, Suzuki M, Boulad F, Kernan NA, et al. Cardiovascular risk factors in survivors of childhood hematopoietic cell transplantation treated with total body irradiation: a longitudinal analysis. Biol Blood Marrow Transplant. 2017;23(3):475–82. https://doi.org/10.1016/j.bbmt.2016.12.623.
Article
PubMed
Google Scholar
Rose SR, Horne VE, Howell J, Lawson SA, Rutter MM, Trotman GE, et al. Late endocrine effects of childhood cancer. Nat Rev Endocrinol. 2016;12(6):319–36. https://doi.org/10.1038/nrendo.2016.45.
Article
CAS
PubMed
Google Scholar
Chemaitilly W, Cohen LE. Diagnosis of endocrine disease: endocrine late-effects of childhood cancer and its treatments. Eur J Endocrinol. 2017;176(4):R183–203. https://doi.org/10.1530/EJE-17-0054.
Article
CAS
PubMed
Google Scholar
Darzy KH, Shalet SM. Hypopituitarism following radiotherapy revisited. Endocr Dev. 2009;15:1–24. https://doi.org/10.1159/000207607.
Article
PubMed
Google Scholar
Jereczek-Fossa BA, Alterio D, Jassem J, Gibelli B, Tradati N, Orecchia R. Radiotherapy-induced thyroid disorders. Cancer Treat Rev. 2004;30(4):369–84. https://doi.org/10.1016/j.ctrv.2003.12.003.
Article
CAS
PubMed
Google Scholar
Waring AC, Rodondi N, Harrison S, Kanaya AM, Simonsick EM, Miljkovic I, Health, Ageing, and Body Composition (Health ABC) Study, et al. Thyroid function and prevalent and incident metabolic syndrome in older adults: the Health, Ageing and Body Composition Study. Clin Endocrinol. 2012;76(6):911–8. https://doi.org/10.1111/j.1365-2265.2011.04328.x.
Article
CAS
Google Scholar
Children’s Oncology Group. Long-term follow-up guidelines for survivors of childhood, adolescent, and young adult cancer. 2013. http://www.survivorshipguidelines.org/pdf/LTFUGuidelines_40.pdf. Accessed 2 August 2020.